精准的网络流量预测是实现网络精细化和智能化管理的关键,也是网络运营商、云服务提供商等实现网络智能运维及应用服务保障的重要支撑,属于当前业界研究的热点.网络流量预测问题一般可被视为一种时间序列预测问题,现有时间序列预测模型...精准的网络流量预测是实现网络精细化和智能化管理的关键,也是网络运营商、云服务提供商等实现网络智能运维及应用服务保障的重要支撑,属于当前业界研究的热点.网络流量预测问题一般可被视为一种时间序列预测问题,现有时间序列预测模型虽然能起到一定作用,但这些通用模型很少考虑流量数据集本身特点,从而无法在网络流量预测性能上取得突破.为此,本文重点研究了网络流量数据集中的自然周期特征,提出了一种能有效利时间序列周期性特点的网络流量预测通用模型——Cycle Little Linear Head(CycleLLH).该模型主干为Transformer的编码器,其中两个关键设计在于:(1)周期整合.将流量序列按照一个特定周期划分步长划分为不同的周期块,然后将这些周期块对应相位的时间节点分别嵌入到不同输入令牌;(2)小线性层.由多个多层感知机组成,并且多层感知机单独作用于每个相位的时间特征.周期整合使得模型具有两个优点:更有利于模型提取数据集在一个周期内的特征;注意力矩阵的计算和内存复杂度可以看作是和周期划分步长二次方有关的常数,使得模型可以使用更大的回溯窗口而仅增加少量计算资源.通过在公共流量数据集上进行大量实验,本研究表明:与当前最先进的模型相比,CycleLLH在流量预测精度方面表现出显著优势,在六个数据集上的预测精度分别提升了12.3%、8.4%、29.9%、5.8%、8.3%和2.0%.代码可从https://github.com/wenjietang218/CycleLLH.git中获取.展开更多
认知网络能够感知外部环境,并能根据周围环境的变化智能、自主、自适应的动态变化,这种特性更适合为用户提供QoS(Quality of Service)保障.设计高精度的流量预测模型,可以提高认知网络的认知特性.本文针对原有预测模型预测精度低、对训...认知网络能够感知外部环境,并能根据周围环境的变化智能、自主、自适应的动态变化,这种特性更适合为用户提供QoS(Quality of Service)保障.设计高精度的流量预测模型,可以提高认知网络的认知特性.本文针对原有预测模型预测精度低、对训练数据依赖程度高以及不能很好的刻画网络流量特征的不足,提出了一个混合的流量预测模型.它使用蚁群算法训练BP网络的权值,避免了梯度下降法收敛速度慢、容易陷入局部最优的问题.并且在预测之前,首先使用BP(Back Propagation)网络剔除原始数据中的异常数据信号,再对其进行小波分解,最后使用混合模型预测网络流量,实现了认知网络中高精度的流量预测.展开更多
文摘精准的网络流量预测是实现网络精细化和智能化管理的关键,也是网络运营商、云服务提供商等实现网络智能运维及应用服务保障的重要支撑,属于当前业界研究的热点.网络流量预测问题一般可被视为一种时间序列预测问题,现有时间序列预测模型虽然能起到一定作用,但这些通用模型很少考虑流量数据集本身特点,从而无法在网络流量预测性能上取得突破.为此,本文重点研究了网络流量数据集中的自然周期特征,提出了一种能有效利时间序列周期性特点的网络流量预测通用模型——Cycle Little Linear Head(CycleLLH).该模型主干为Transformer的编码器,其中两个关键设计在于:(1)周期整合.将流量序列按照一个特定周期划分步长划分为不同的周期块,然后将这些周期块对应相位的时间节点分别嵌入到不同输入令牌;(2)小线性层.由多个多层感知机组成,并且多层感知机单独作用于每个相位的时间特征.周期整合使得模型具有两个优点:更有利于模型提取数据集在一个周期内的特征;注意力矩阵的计算和内存复杂度可以看作是和周期划分步长二次方有关的常数,使得模型可以使用更大的回溯窗口而仅增加少量计算资源.通过在公共流量数据集上进行大量实验,本研究表明:与当前最先进的模型相比,CycleLLH在流量预测精度方面表现出显著优势,在六个数据集上的预测精度分别提升了12.3%、8.4%、29.9%、5.8%、8.3%和2.0%.代码可从https://github.com/wenjietang218/CycleLLH.git中获取.
文摘认知网络能够感知外部环境,并能根据周围环境的变化智能、自主、自适应的动态变化,这种特性更适合为用户提供QoS(Quality of Service)保障.设计高精度的流量预测模型,可以提高认知网络的认知特性.本文针对原有预测模型预测精度低、对训练数据依赖程度高以及不能很好的刻画网络流量特征的不足,提出了一个混合的流量预测模型.它使用蚁群算法训练BP网络的权值,避免了梯度下降法收敛速度慢、容易陷入局部最优的问题.并且在预测之前,首先使用BP(Back Propagation)网络剔除原始数据中的异常数据信号,再对其进行小波分解,最后使用混合模型预测网络流量,实现了认知网络中高精度的流量预测.