1978年,作者首次发表了群子统计理论及其在某些自然科学领域里应用的论文;接着于1984年出版了“模糊群子论”,系统地论述了线性群子理论方程及其某些应用。而后又把群子理论推广到群子间相互作用的非线性体系中,建立了重整化非线性群子...1978年,作者首次发表了群子统计理论及其在某些自然科学领域里应用的论文;接着于1984年出版了“模糊群子论”,系统地论述了线性群子理论方程及其某些应用。而后又把群子理论推广到群子间相互作用的非线性体系中,建立了重整化非线性群子理论方程。这些理论不仅能够推导出Fermi-Dirac,Bose-Einstein,Maxwell-Boltzmann统计方程,而且用很简单的方法可推导出著名的Van der Waals非理想气体方程,Kohlrausch电导方程,BET多层吸附方程。通过非线性群子方程又推导了汽液平衡组成关系式,高分子溶液第二维利系数与分子量之间的关系式,共聚物玻璃化温度与组成关系,高分子合金熔体粘度与组成关系,分子量分布关系式等。这些都表现了第四统计理论在各方面的普遍适用性和广泛应用的前景。展开更多
A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum fie...A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.展开更多
文摘1978年,作者首次发表了群子统计理论及其在某些自然科学领域里应用的论文;接着于1984年出版了“模糊群子论”,系统地论述了线性群子理论方程及其某些应用。而后又把群子理论推广到群子间相互作用的非线性体系中,建立了重整化非线性群子理论方程。这些理论不仅能够推导出Fermi-Dirac,Bose-Einstein,Maxwell-Boltzmann统计方程,而且用很简单的方法可推导出著名的Van der Waals非理想气体方程,Kohlrausch电导方程,BET多层吸附方程。通过非线性群子方程又推导了汽液平衡组成关系式,高分子溶液第二维利系数与分子量之间的关系式,共聚物玻璃化温度与组成关系,高分子合金熔体粘度与组成关系,分子量分布关系式等。这些都表现了第四统计理论在各方面的普遍适用性和广泛应用的前景。
文摘A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.