为了解决电信行业客户流失预测模型中流失者和未流失者比例偏斜问题,模型依据数据挖掘原理,以CRISP-DM(Cross-industry Standard Process for Data Mining)建模过程为框架,采用了多基决策树联合决策的思想。模型避免了训练出一棵"...为了解决电信行业客户流失预测模型中流失者和未流失者比例偏斜问题,模型依据数据挖掘原理,以CRISP-DM(Cross-industry Standard Process for Data Mining)建模过程为框架,采用了多基决策树联合决策的思想。模型避免了训练出一棵"空"决策树,把所有客户都预测为未流失的问题。与单个分类器相比,提高了预测模型的查准率和泛化能力。展开更多
文摘为了解决电信行业客户流失预测模型中流失者和未流失者比例偏斜问题,模型依据数据挖掘原理,以CRISP-DM(Cross-industry Standard Process for Data Mining)建模过程为框架,采用了多基决策树联合决策的思想。模型避免了训练出一棵"空"决策树,把所有客户都预测为未流失的问题。与单个分类器相比,提高了预测模型的查准率和泛化能力。