由于脑电信号具有低信噪比、非平稳等特点,传统脑机接口需对用户执行长时间的校准训练,才能建立可靠、准确的分类模型。针对当前迁移学习在脑电信号上分类准确率低的问题,本研究提出了基于黎曼空间特征迁移学习(Riemannian space featur...由于脑电信号具有低信噪比、非平稳等特点,传统脑机接口需对用户执行长时间的校准训练,才能建立可靠、准确的分类模型。针对当前迁移学习在脑电信号上分类准确率低的问题,本研究提出了基于黎曼空间特征迁移学习(Riemannian space feature transfer learning,RFTL)的运动想象脑电信号分类算法。该算法首先在黎曼空间对源域和目标域数据进行分布对齐后,利用联合分布适配减少不同域间的数据分布差异,构建适用于目标域任务的域不变分类器模型。实验结果表明,RFTL算法可有效解决跨域分布的不一致性,显著提高运动想象脑电信号跨对象的识别准确率,改善脑机接口研究中的通用性问题。展开更多
文摘由于脑电信号具有低信噪比、非平稳等特点,传统脑机接口需对用户执行长时间的校准训练,才能建立可靠、准确的分类模型。针对当前迁移学习在脑电信号上分类准确率低的问题,本研究提出了基于黎曼空间特征迁移学习(Riemannian space feature transfer learning,RFTL)的运动想象脑电信号分类算法。该算法首先在黎曼空间对源域和目标域数据进行分布对齐后,利用联合分布适配减少不同域间的数据分布差异,构建适用于目标域任务的域不变分类器模型。实验结果表明,RFTL算法可有效解决跨域分布的不一致性,显著提高运动想象脑电信号跨对象的识别准确率,改善脑机接口研究中的通用性问题。