期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于联合分布适配的单向迁移差分进化算法 被引量:1
1
作者 李晰 李帅 +1 位作者 冯艳红 李明亮 《郑州大学学报(工学版)》 CAS 北大核心 2023年第5期24-31,共8页
传统的差分进化算法求解优化问题一般从零知识开始,独立搜索,没有利用已求解过的相似问题信息,针对这一问题,在传统的差分进化算法中引入迁移学习技术。首先,利用存在相关性的源问题的优化种群和目标问题的当前种群抽取关键信息,通过联... 传统的差分进化算法求解优化问题一般从零知识开始,独立搜索,没有利用已求解过的相似问题信息,针对这一问题,在传统的差分进化算法中引入迁移学习技术。首先,利用存在相关性的源问题的优化种群和目标问题的当前种群抽取关键信息,通过联合分布适配的方法映射到高维希尔伯特空间。其次,用映射后得到的矩阵构建新种群,代替目标问题的种群,完成后续进化任务。实现了2种迁移模式:在目标问题求解初始化时,将源问题的有效信息进行迁移,引导算法搜索方向;目标问题求解迭代一定的次数后,再利用迁移的有效信息,加快种群收敛速度。最后,采用9组多任务测试函数对算法进行了测试,与无迁移的差分进化算法以及直接迁移种群的无适配技术的差分进化算法进行对比。结果表明:在求解质量方面,所提算法有7组优于传统的无迁移差分进化算法;在求解速度方面,所提算法有7组比传统差分进化算法收敛速度更快;基于迁移学习的差分进化算法对提高目标优化问题的求解精度和收敛速度是有效的。 展开更多
关键词 优化算法 迁移学习 联合分布适配 单向迁移 差分进化算法
下载PDF
基于多域特征联合分布适配的刀具磨损状态识别 被引量:3
2
作者 黄华 姚嘉靖 +1 位作者 薛文虎 吕延军 《计算机集成制造系统》 EI CSCD 北大核心 2022年第8期2419-2429,共11页
针对不同加工参数下的刀具磨损建模问题,提出一种基于多域特征联合分布适配的刀具状态识别方法,以提高刀具状态识别模型的泛化性能与识别精度。对切削过程中不同加工参数下的传感器信号数据,提取时域、频域、时频域特征,通过联合分布适... 针对不同加工参数下的刀具磨损建模问题,提出一种基于多域特征联合分布适配的刀具状态识别方法,以提高刀具状态识别模型的泛化性能与识别精度。对切削过程中不同加工参数下的传感器信号数据,提取时域、频域、时频域特征,通过联合分布适配算法(JDA)缩小特征间的差异,适配后的特征输入到K-最近邻分类器(KNN)进行磨损状态识别。实验结果表明,该方法能够有效识别不同加工参数下的刀具磨损状态,平均识别精度可提升12%以上,具有较好的泛化性能和识别精度。 展开更多
关键词 多域特征 刀具磨损 联合分布适配 K-最近邻分类器
下载PDF
基于联合分布适配的智能电表运行状态评价 被引量:6
3
作者 许丹 李游 李贺龙 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2022年第4期674-681,共8页
针对智能电表运行状态评价中经常存在带标签的数据采集困难且不同地区的数据分布不一致的问题,在智能电表的运行状态评价领域引入迁移学习中的联合分布适配(JDA)算法。该算法寻找一个最优化的变换矩阵,使得在变换后的空间中不同地区数... 针对智能电表运行状态评价中经常存在带标签的数据采集困难且不同地区的数据分布不一致的问题,在智能电表的运行状态评价领域引入迁移学习中的联合分布适配(JDA)算法。该算法寻找一个最优化的变换矩阵,使得在变换后的空间中不同地区数据的边缘分布和条件分布距离最小化。针对条件分布适配中目标域没有数据标签的问题,采用伪标签迭代的方法使得目标域伪标签不断接近真实标签。变换后空间数据中训练得到的分类模型可以运用于新的地区,实现迁移。实验结果证明了JDA算法在智能电表运行状态评价中的有效性。 展开更多
关键词 联合分布适配(JDA) 智能电表 运行状态评价 迁移学习 智能电网
下载PDF
基于联合分布适配的水下声源测距算法研究 被引量:1
4
作者 李理 孙玉林 +1 位作者 曹然 郭龙祥 《电子与信息学报》 EI CSCD 北大核心 2022年第6期2061-2070,共10页
水下声源被动测距基于接收数据中声源辐射的声压信号,通过特定方法在空域中搜索声源位置参数,是一个参数估计问题。对于参数估计问题,机器学习方法通常将其转化为分类问题,相比于传统匹配场处理(MFP)具有更准确的估计能力,并且无需先验... 水下声源被动测距基于接收数据中声源辐射的声压信号,通过特定方法在空域中搜索声源位置参数,是一个参数估计问题。对于参数估计问题,机器学习方法通常将其转化为分类问题,相比于传统匹配场处理(MFP)具有更准确的估计能力,并且无需先验的声场环境信息。但当训练数据和测试数据的概率密度函数服从不同的分布或者训练数据严重不足时,传统机器学习方法下的分类器预测效果通常较差。因此,该文提出基于联合分布适配(JDA)的水下声源测距算法,该算法使用JDA寻找恰当的变换矩阵进行数据映射,从而减小不同数据域间分布差异,实现源域到目标域的迁移。对经过JDA后数据进行实验的结果表明,JDA可以有效降低在不同时间和不同方位的水声场中获取航迹数据之间的差异,使得基于源域训练的分类器对目标域预测结果的均方根误差(RMSE)和平均绝对误差(MAE)降低了超过30%,从而实现对声源更准确的距离估计。 展开更多
关键词 水下声源测距 联合分布适配 K近邻 支持向量机 卷积神经网络
下载PDF
基于JDA-BP网络的MQAM信号调制识别
5
作者 张承畅 李晓梦 +3 位作者 李吉利 王艺培 黄彦豪 罗元 《实验技术与管理》 CAS 北大核心 2024年第5期31-37,共7页
针对小样本条件下由信号调制识别准确率低和信道环境变化导致调制识别网络性能下降的问题,提出了一种基于联合分布适配-反向传播神经网络(JDA-BP)调制识别方法。通过改变信道环境生成概率分布不同的多进制正交振幅调制(MQAM)信号,提取M... 针对小样本条件下由信号调制识别准确率低和信道环境变化导致调制识别网络性能下降的问题,提出了一种基于联合分布适配-反向传播神经网络(JDA-BP)调制识别方法。通过改变信道环境生成概率分布不同的多进制正交振幅调制(MQAM)信号,提取MQAM信号的瞬时统计特征和高阶累积量组成样本,构建3个概率分布不同的数据集,使用联合分布适配(JDA)算法缩小数据集间的特征差异,并将适配后的数据集送入BP神经网络进行训练和测试。对比实验表明,在目标域为小样本的条件下,该文方法针对源域和目标域概率分布不同的情况,能有效地减小概率分布距离,信号调制识别平均准确率可达73.25%;相比于比未使用JDA-BP方法,调制识别准确率平均提高了6.80%。 展开更多
关键词 联合分布适配 多进制正交振幅调制 调制识别 反向传播神经网络
下载PDF
基于黎曼空间的运动想象脑电信号特征迁移学习算法研究
6
作者 高诺 王蕴辉 《生物医学工程研究》 2023年第2期174-180,共7页
由于脑电信号具有低信噪比、非平稳等特点,传统脑机接口需对用户执行长时间的校准训练,才能建立可靠、准确的分类模型。针对当前迁移学习在脑电信号上分类准确率低的问题,本研究提出了基于黎曼空间特征迁移学习(Riemannian space featur... 由于脑电信号具有低信噪比、非平稳等特点,传统脑机接口需对用户执行长时间的校准训练,才能建立可靠、准确的分类模型。针对当前迁移学习在脑电信号上分类准确率低的问题,本研究提出了基于黎曼空间特征迁移学习(Riemannian space feature transfer learning,RFTL)的运动想象脑电信号分类算法。该算法首先在黎曼空间对源域和目标域数据进行分布对齐后,利用联合分布适配减少不同域间的数据分布差异,构建适用于目标域任务的域不变分类器模型。实验结果表明,RFTL算法可有效解决跨域分布的不一致性,显著提高运动想象脑电信号跨对象的识别准确率,改善脑机接口研究中的通用性问题。 展开更多
关键词 脑机接口 运动想象 迁移学习 黎曼空间 联合分布适配
下载PDF
基于多工况迁移学习的磨机负荷参数软测量 被引量:3
7
作者 贺敏 支恩玮 +1 位作者 程兰 阎高伟 《控制工程》 CSCD 北大核心 2019年第11期1994-1999,共6页
湿式球磨机运行过程中需要对多个负荷参数进行监测,然而运行工况改变会导致实时数据和建模数据的同分布假设不再成立。针对传统软测量方法不能考虑负荷参数之间的关联性,以及多工况情况下建模数据和实时数据概率分布变化引起的模型性能... 湿式球磨机运行过程中需要对多个负荷参数进行监测,然而运行工况改变会导致实时数据和建模数据的同分布假设不再成立。针对传统软测量方法不能考虑负荷参数之间的关联性,以及多工况情况下建模数据和实时数据概率分布变化引起的模型性能恶化问题,有针对性的引入迁移学习策略与多任务学习机制,建立一种基于多工况迁移学习的湿式球磨机负荷参数软测量模型。首先采用联合分布适配在降维过程中共同适配不同工况的边缘和条件分布,然后利用多任务最小二乘支持向量机方法对磨机负荷参数进行回归预测。实验结果表明,该软测量方法显著优于现有的方法,适用于多工况情况下的软测量建模。 展开更多
关键词 多工况 迁移学习 湿式球磨机负荷参数 联合分布适配 多任务 最小二乘支持向量机
下载PDF
基于最大均值差异多源域迁移学习的湿式球磨机负荷参数软测量 被引量:13
8
作者 阎高伟 贺敏 +1 位作者 汤健 韩东升 《控制与决策》 EI CSCD 北大核心 2018年第10期1795-1800,共6页
针对湿式球磨机工况改变时,实时数据与建模数据分布不一致,不满足数据同分布的假设,传统软测量模型难以适应数据分布变化,造成模型性能恶化的问题,有针对性地引入迁移学习策略,并通过多源域集成机制提高模型的鲁棒性,实现多工况下湿式... 针对湿式球磨机工况改变时,实时数据与建模数据分布不一致,不满足数据同分布的假设,传统软测量模型难以适应数据分布变化,造成模型性能恶化的问题,有针对性地引入迁移学习策略,并通过多源域集成机制提高模型的鲁棒性,实现多工况下湿式球磨机负荷参数测量.首先,对多工况数据进行预处理并提取频谱特征,经过联合分布适配对多工况数据进行边缘、条件分布适配;然后,使用最大均值差异对适配后的数据进行分布度量并为源域构建的回归器加权;最后,对目标域数据进行负荷预测.通过对比实验与交叉实验表明了模型的实用性和有效性. 展开更多
关键词 湿式球磨机负荷 最大均值差异 联合分布适配 多源域 软测量 迁移学习
原文传递
基于迁移学习的跨域异常流量检测 被引量:4
9
作者 彭雨荷 陈翔 +1 位作者 陈双武 杨坚 《北京邮电大学学报》 EI CAS CSCD 北大核心 2021年第2期33-39,共7页
基于已知数据的机器学习模型在实际异常流量检测任务中不完全可靠,为此,将不同分布的流量分别作为源域和目标域,建立跨域网络异常流量检测框架,提出了基于联合分布适配的迁移学习方法.通过寻找最优变换矩阵、适配源域与目标域之间的条... 基于已知数据的机器学习模型在实际异常流量检测任务中不完全可靠,为此,将不同分布的流量分别作为源域和目标域,建立跨域网络异常流量检测框架,提出了基于联合分布适配的迁移学习方法.通过寻找最优变换矩阵、适配源域与目标域之间的条件概率和边缘概率,实现源域与目标域间的特征迁移,从而解决由于源域与目标域分布差异大所引起的检测准确率下降等问题.实验结果表明,所提方法可以显著提升跨域流量的检测准确率. 展开更多
关键词 异常流量检测 跨域 迁移 联合分布适配 机器学习
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部