复述生成是一种基于自然语言生成(NLG)的文本数据增强方法。针对基于Seq2Seq(Sequence-to-Sequence)框架的复述生成方法中出现的生成重复、语意错误及多样性差的问题,提出一种基于序列与图的联合学习复述生成网络(J-SGPGN)。J-SGPGN的...复述生成是一种基于自然语言生成(NLG)的文本数据增强方法。针对基于Seq2Seq(Sequence-to-Sequence)框架的复述生成方法中出现的生成重复、语意错误及多样性差的问题,提出一种基于序列与图的联合学习复述生成网络(J-SGPGN)。J-SGPGN的编码器融合了图编码和序列编码进行特征增强,而解码器中则设计了序列生成和图生成两种解码方式并行解码;然后采用联合学习方法训练模型,旨在兼顾句法监督与语义监督以同步提升生成的准确性和多样性。在Quora数据集上的实验结果表明,J-SGPGN的生成准确性指标METEOR(Metric for Evaluation of Translation with Explicit ORdering)较准确性最优基线模型——RNN+GCN提升了3.44个百分点,生成多样性指标Self-BLEU(Self-BiLingual Evaluation Understudy)较多样性最优基线模型——多轮回译复述生成(BTmPG)模型降低了12.79个百分点。J-SGPGN能够生成语义更准确、表达方式更多样的复述文本。展开更多
针对隐式数据单纯利用隐反馈信息往往难以获取较好推荐性能的问题,提出一种融合元数据及隐式反馈信息的多层次深度联合学习(multi-level deep joint learning,MDJL)推荐方法。它利用双深度神经网络共同学习,其中一个网络利用隐式反馈学...针对隐式数据单纯利用隐反馈信息往往难以获取较好推荐性能的问题,提出一种融合元数据及隐式反馈信息的多层次深度联合学习(multi-level deep joint learning,MDJL)推荐方法。它利用双深度神经网络共同学习,其中一个网络利用隐式反馈学习用户及项目个体个性化关系,另一个网络利用元数据学习高层次群体共性化关系,从而有效地表达用户偏好,使MDJL框架在个体及群体因素间达到平衡。最后,MDJL推荐算法在Movie Lens 100K和MovieLens 1M两个公开数据集上进行实验评估。结果表明,该算法比其他基线方法表现出了更为优越的推荐性能。展开更多
对工具及其功用性部件的认知是共融机器人智能提升的重要研究方向.本文针对家庭日常工具的功用性部件建模与检测问题展开研究,提出了一种基于条件随机场(Conditional random field, CRF)和稀疏编码联合学习的家庭日常工具功用性部件检...对工具及其功用性部件的认知是共融机器人智能提升的重要研究方向.本文针对家庭日常工具的功用性部件建模与检测问题展开研究,提出了一种基于条件随机场(Conditional random field, CRF)和稀疏编码联合学习的家庭日常工具功用性部件检测算法.首先,从工具深度图像提取表征工具功用性部件的几何特征;然后,分析CRF和稀疏编码之间的耦合关系并进行公式化表示,将特征稀疏化后作为潜变量构建初始条件随机场模型,并进行稀疏字典和CRF的协同优化:一方面,将特征的稀疏表示作为CRF的随机变量条件及权重参数选择器;另一方面,在CRF调控下对稀疏字典进行更新.随后使用自适应时刻估计(Adaptive moment estimation, Adam)方法实现模型解耦与求解.最后,给出了基于联合学习的工具功用性部件模型离线构建算法,以及基于该模型的在线检测方法.实验结果表明,相较于使用传统特征提取和模型构建方法,本文方法对功用性部件的检测精度和效率均得到提升,且能够满足普通配置机器人对工具功用性认知的需要.展开更多
文摘复述生成是一种基于自然语言生成(NLG)的文本数据增强方法。针对基于Seq2Seq(Sequence-to-Sequence)框架的复述生成方法中出现的生成重复、语意错误及多样性差的问题,提出一种基于序列与图的联合学习复述生成网络(J-SGPGN)。J-SGPGN的编码器融合了图编码和序列编码进行特征增强,而解码器中则设计了序列生成和图生成两种解码方式并行解码;然后采用联合学习方法训练模型,旨在兼顾句法监督与语义监督以同步提升生成的准确性和多样性。在Quora数据集上的实验结果表明,J-SGPGN的生成准确性指标METEOR(Metric for Evaluation of Translation with Explicit ORdering)较准确性最优基线模型——RNN+GCN提升了3.44个百分点,生成多样性指标Self-BLEU(Self-BiLingual Evaluation Understudy)较多样性最优基线模型——多轮回译复述生成(BTmPG)模型降低了12.79个百分点。J-SGPGN能够生成语义更准确、表达方式更多样的复述文本。
文摘对工具及其功用性部件的认知是共融机器人智能提升的重要研究方向.本文针对家庭日常工具的功用性部件建模与检测问题展开研究,提出了一种基于条件随机场(Conditional random field, CRF)和稀疏编码联合学习的家庭日常工具功用性部件检测算法.首先,从工具深度图像提取表征工具功用性部件的几何特征;然后,分析CRF和稀疏编码之间的耦合关系并进行公式化表示,将特征稀疏化后作为潜变量构建初始条件随机场模型,并进行稀疏字典和CRF的协同优化:一方面,将特征的稀疏表示作为CRF的随机变量条件及权重参数选择器;另一方面,在CRF调控下对稀疏字典进行更新.随后使用自适应时刻估计(Adaptive moment estimation, Adam)方法实现模型解耦与求解.最后,给出了基于联合学习的工具功用性部件模型离线构建算法,以及基于该模型的在线检测方法.实验结果表明,相较于使用传统特征提取和模型构建方法,本文方法对功用性部件的检测精度和效率均得到提升,且能够满足普通配置机器人对工具功用性认知的需要.