为解决核聚变发电热功率输出不稳定性和汽轮发电机组平稳运行之间的矛盾,中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)核聚变发电厂可运用储热技术对核聚变堆的功率输出进行削峰平谷。储热技术有多种类型,各类储...为解决核聚变发电热功率输出不稳定性和汽轮发电机组平稳运行之间的矛盾,中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)核聚变发电厂可运用储热技术对核聚变堆的功率输出进行削峰平谷。储热技术有多种类型,各类储热技术对于核聚变发电厂的适用性亟须进行对比。本文选取核聚变反应堆氦冷陶瓷增殖包层的参数作为储热技术边界条件,通过对储热技术适用温度范围进行评估,初步分析出有潜力运用于CFETR核聚变发电厂的三种储热技术,并对其进行成本初步预测。三大类储热技术均可选出适用CFETR核聚变发电厂氦冷增殖包层温度参数的储热介质。但化学储热由于其吸热和放热存在温差,不利于系统的稳定性及造成能量的损耗,显热储热技术和相变储热技术吸热温度和放热温度温差较小,具有应用于CFETR核聚变发电厂的潜力。初步经济性分析结果显示:相变储热成本最低,其次为熔融盐储热,再次为固相显热储热技术中利用硅砖作为储热介质,固相显热储热技术中利用铸钢作为储热介质成本最高。储热技术中,熔融盐储热技术、相变储热技术、固相显热储热具有应用于核聚变发电厂氦冷增殖包层的先决条件。熔融盐储热技术成熟度较高,有大量工程应用,造价在相变储热和固相显热储热之间,运用潜力较大。相变储热的成本最低,参数适用于核聚变发电,但其技术成熟度较低,有望成为未来研究的重点。展开更多
文摘为解决核聚变发电热功率输出不稳定性和汽轮发电机组平稳运行之间的矛盾,中国聚变工程实验堆(China Fusion Engineering Test Reactor,CFETR)核聚变发电厂可运用储热技术对核聚变堆的功率输出进行削峰平谷。储热技术有多种类型,各类储热技术对于核聚变发电厂的适用性亟须进行对比。本文选取核聚变反应堆氦冷陶瓷增殖包层的参数作为储热技术边界条件,通过对储热技术适用温度范围进行评估,初步分析出有潜力运用于CFETR核聚变发电厂的三种储热技术,并对其进行成本初步预测。三大类储热技术均可选出适用CFETR核聚变发电厂氦冷增殖包层温度参数的储热介质。但化学储热由于其吸热和放热存在温差,不利于系统的稳定性及造成能量的损耗,显热储热技术和相变储热技术吸热温度和放热温度温差较小,具有应用于CFETR核聚变发电厂的潜力。初步经济性分析结果显示:相变储热成本最低,其次为熔融盐储热,再次为固相显热储热技术中利用硅砖作为储热介质,固相显热储热技术中利用铸钢作为储热介质成本最高。储热技术中,熔融盐储热技术、相变储热技术、固相显热储热具有应用于核聚变发电厂氦冷增殖包层的先决条件。熔融盐储热技术成熟度较高,有大量工程应用,造价在相变储热和固相显热储热之间,运用潜力较大。相变储热的成本最低,参数适用于核聚变发电,但其技术成熟度较低,有望成为未来研究的重点。