期刊文献+
共找到6,248篇文章
< 1 2 250 >
每页显示 20 50 100
基于机器学习的茶树DNA聚类算法
1
作者 杨小平 倪萍 +4 位作者 诸葛天秋 罗跃新 郭春雨 庞月兰 吴雨婷 《广西大学学报(自然科学版)》 CAS 北大核心 2024年第2期386-399,共14页
为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据... 为了研究茶树基因序列的聚类问题,设计一种基于累计方差贡献率进行改进的核主成分分析(KPCA)与k均值(k-means)++聚类算法相结合的降维聚类算法(KPCA-k-means++)。将基因库数据集筛选分组后,利用k-mers算法提取基因数据的数据特征,根据累计方差贡献率的占比大于85%的标准确定降维主元个数对KPCA进行降维改进并采用k-means++算法对降维后数据聚类,通过CH(Calinski-Harabaze Index)指标和响应时间分析聚类结果。结果表明:在单独聚类、KPCA聚类、改进PCA聚类、改进KPCA聚类4种处理方式中,改进KPCA-k-means++算法在不同处理方式和不同样本数的对比下,CH指标均为最高,与未改进时相比平均高出33%。在响应时间方面,改进KPCA-k-means++算法与同样改进PCA-k-means++算法在不同聚类数和样本数的对比下响应时间均较短。改进KPCA-k-means++算法能够保证对于茶树的基因序列的聚类准确率和聚类速度,表现出极好的聚类稳定性。 展开更多
关键词 核主成分分析 累计方差贡献率 K均值聚类算法 基因
下载PDF
基于改进K-means数据聚类算法的网络入侵检测 被引量:1
2
作者 黄俊萍 《成都工业学院学报》 2024年第2期58-62,97,共6页
随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算... 随着入侵手段的不断更新和升级,传统入侵检测方法准确率下降、检测时间延长,无法满足网络防御要求。为此,提出一种经过改进K均值(K-means)数据聚类算法,以应对不断升级的网络入侵行为。先以防火墙日志为基础转换数值,然后基于粒子群算法求取最优初始聚类中心,实现K-means数据聚类算法的改进;最后以计算得出的特征值为输入项,实现对网络入侵行为的精准检测。结果表明:K-means算法改进后较改进前的戴维森堡丁指数更小,均低于0.6,达到了改进目的。改进K-means算法各样本的准确率均高于90%,相对更高,检测时间均低于10 s,相对更少,说明该方法能够以高效率完成更准确的网络入侵检测。 展开更多
关键词 改进K-means数据聚类算法 防火墙日志 入侵检测特征 粒子群算法 网络入侵检测
下载PDF
基于K均值聚类算法和LSTM神经网络的管道腐蚀阶段预测方法
3
作者 王新颖 刘岚 +2 位作者 陈海群 胡磊磊 谢逢豪 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期84-89,共6页
针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波... 针对声发射检测获得的管道腐蚀信号,提出了一种基于K均值(K-means)聚类算法和长短期记忆(LSTM)神经网络的管道腐蚀阶段预测方法。首先,利用K-means聚类算法将腐蚀信号分类,再构建LSTM神经网络模型,并采取了无监督学习的方式,以声发射波形为出发点,对模型进行参数优化,最后进行管道腐蚀阶段预测,并根据评价指标对模型进行评价。研究表明:对LSTM神经网络模型适当增加隐藏层,可以使得模型更加稳定,鲁棒性更好;与现有故障诊断模型相比,LSTM神经网络模型的精度更高。 展开更多
关键词 声发射无损检测 腐蚀阶段预测 K-MEANS聚类算法 长短期记忆(LSTM)神经网络 鲁棒性
下载PDF
基于稀疏自编码的多维数据去重聚类算法分析
4
作者 薛丽香 高丽杰 李占波 《计算机仿真》 2024年第3期542-547,共6页
随着科技信息的不断发展,数据量与数据类型与日俱增,针对数据集维度高、重复数据多导致有效信息提取复杂的问题,提出基于改进稀疏自编码器的多维数据聚类算法。算法分为数据处理与聚类分析两大部分,数据处理时首先利用S-SAE中逐层贪婪... 随着科技信息的不断发展,数据量与数据类型与日俱增,针对数据集维度高、重复数据多导致有效信息提取复杂的问题,提出基于改进稀疏自编码器的多维数据聚类算法。算法分为数据处理与聚类分析两大部分,数据处理时首先利用S-SAE中逐层贪婪的原理将高维数据集降维至每组6维的数据集;接着采用映射值匹配机制对降维后的数据集进行重复数据清洗处理,被清洗的值用0替代;然后将处理好的数据投入到K-Means++聚类算法中进行聚类分析;最终构建出TS-SAE-K-Means++多维数据聚类模型,并通过最优化分析得出其最优化参数设置情况。通过对不同基线组合算法的仿真对比分析表明,TS-SAE-K-Means++在聚类轮廓系数S与模型特征值F1评价体系中均优于其它算法组合。这表明提出的算法在解决高维数据内有效信息提取的问题上具有一定的优越性。 展开更多
关键词 改进稀疏自编码器 聚类算法 评级指标
下载PDF
基于空间插值的不规则海洋地质样品测试分析数据聚类算法研究
5
作者 邵长高 严镔 陈秋 《热带海洋学报》 CAS CSCD 北大核心 2024年第2期166-172,共7页
海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析... 海洋地质调查中获取大量海洋沉积物柱状样样品测试分析数据,样品测试分析目的不同导致柱状样数据采样深度不同,由此造成地质取样数据在三维空间上呈现不规则散点状分布。传统聚类算法无法在三维空间上对此类不规则散点数据进行聚类分析。对此,文章设计了一种基于空间插值的不规则地质样品测试分析数据聚类算法,有效地将三维样品测试分析散点数据降为二维数据后进行聚类分析,本算法较好地解决了地质体中试验测试数据的不均衡性问题,为海洋地质大数据分析提供了基础技术方法。 展开更多
关键词 地质取样 实验测试 聚类算法 空间插值 三维
下载PDF
基于RFM的聚类算法在零售市场客户细分研究
6
作者 吴花平 冯薇薇 李林 《重庆理工大学学报(社会科学)》 2024年第10期138-149,共12页
客户关系管理作为企业管理的重要组成部分,其客户细分功能直接影响着企业营销战略。为了更好地对零售市场进行客户细分,通过应用某英国零售商数据集,基于RFM模型和4种聚类算法,验证基于RFM模型的K-means、DBSCAN、AGNES、GMM等4种聚类... 客户关系管理作为企业管理的重要组成部分,其客户细分功能直接影响着企业营销战略。为了更好地对零售市场进行客户细分,通过应用某英国零售商数据集,基于RFM模型和4种聚类算法,验证基于RFM模型的K-means、DBSCAN、AGNES、GMM等4种聚类算法在UCI Online Retail零售商数据集上的客户分类效果;并利用轮廓系数、卡林斯基-哈拉巴斯指数(CHI)和戴维森堡丁指数(DBI)评价比较上述4种聚类算法的分类结果。实证结果表明:在所选零售商数据集上,K-means和AGNES算法的聚类效果较好,DBSCAN和GMM算法的聚类效果不理想,旨在为机器学习聚类算法在基于RFM模型的客户分类提供参考和借鉴。建议企业重视产出数据,完善企业数据相关制度;结合客户数据特征和企业自身销售特点,有针对性地使用聚类算法进行客户细分,辅助总结客户画像,进而制定有针对性的营销策略。 展开更多
关键词 客户细分 机器学习 RFM 聚类算法 零售市场
下载PDF
基于蚁群算法的三支k-means聚类算法
7
作者 朱金 徐天杰 王平心 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期63-69,共7页
在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法... 在聚类分析中,三支k-means聚类算法较具有较强的处理边界不确定数据的能力,但仍然存在对初始聚类中心敏感的问题.通过将蚁群算法和三支k-means聚类算法相结合,给出了一种基于蚁群算法的三支k-means聚类算法来解决这一问题.利用蚁群算法中随机概率选择策略和信息素的正负反馈机制,动态调整权重的方法,对三支k-means聚类算法进行优化.在UCI数据集上实验证明,该方法对聚类结果的性能指标有所提高. 展开更多
关键词 三支k-means K-MEANS聚类算法 中心 蚁群算法
下载PDF
启发式k-means聚类算法的改进研究
8
作者 殷丽凤 栗庆杰 《大连交通大学学报》 CAS 2024年第2期115-119,共5页
启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结... 启发式k-means聚类算法通过在k-means第一次迭代后查看附近的集群来预测每个数据点可能会被划分到的集群子集,有效地加快了算法的运行速度。但由于启发式算法存在随机选择初始聚类中心以及无法有效识别数据集中离群点的缺陷,导致聚类结果的误差平方和较大并且轮廓系数偏小。针对这一问题,提出了CHk-means算法,该算法引入仔细播种方法,克服了启发式k-means算法随机选择初始聚类中心带来的局部最优解问题;该算法引入局部异常因子LOF算法对离群点进行检测,降低了离群点数据对聚类结果的影响。在多个数据集上对3种算法进行对比试验,结果表明CHk-means算法可有效降低聚类结果的误差平方和,增强聚类的轮廓系数,使聚类质量得到明显改善。 展开更多
关键词 聚类算法 K-MEANS 启发式算法 仔细播种 局部异常因子 离群点
下载PDF
基于凝聚层次聚类算法的ATT&CK模型改进
9
作者 徐明迪 崔峰 《计算机与数字工程》 2024年第1期201-205,239,共6页
在应用ATT&CK模型(网络攻击模型)进行网络安全威胁分析的过程中,ATT&CK模型提供的技术集合过于复杂。针对ATT&CK模型应用复杂的问题,论文对模型的技术集进行聚类简化研究,提出了基于聚类算法的模型改进方法,首先对ATT&C... 在应用ATT&CK模型(网络攻击模型)进行网络安全威胁分析的过程中,ATT&CK模型提供的技术集合过于复杂。针对ATT&CK模型应用复杂的问题,论文对模型的技术集进行聚类简化研究,提出了基于聚类算法的模型改进方法,首先对ATT&CK模型的技术集合进行量化和聚类趋势评估,然后对量化的数据应用凝聚层次聚类算法得到简化的聚类结果,最后通过实验验证模型改进有效性。 展开更多
关键词 网络攻击模型 ATT&CK 聚类算法 层次
下载PDF
基于高斯核函数的差分隐私技术联合聚类算法在医疗数据安全中的应用
10
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医疗设备》 2024年第7期28-35,共8页
目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原... 目的针对数据隐私泄露的风险,提出一种基于高斯核函数的差分隐私技术联合聚类算法。通过对医疗数据的处理和保护,旨在提供一种保证医疗数据隐私安全的解决方案。方法通过介绍医疗数据在机器学习过程中隐私暴露的问题以及差分隐私技术原理、差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm,DPFCM)和基于高斯核函数的差分隐私模糊C均值聚类算法(Differential Privacy Fuzzy C-means Algorithm Based on Gaussian Kernel Function,DPFCM_GF)的构建过程,采用最大距离法确定初始中心点,使用聚类中心点的高斯值来计算隐私预算分配比率,使用拉普拉斯噪声完成差分隐私保护。通过收集整理心脏病、乳腺癌、甲状腺疾病、糖尿病的公开数据对各算法进行验证。结果DPFCM_GF和DPFCM对不同数据集的聚类效果随隐私预算的增加逐渐改善。DPFCM_GF限值隐私预算分别为1.31、0.85、0.66、1.75,相对DPFCM减少了41.78%、50.29%、53.52%、38.38%,具有较快的收敛迭代速度,增幅差异具有统计学意义(P<0.05)。结论在医疗数据分析中,DPFCM_GF在一定程度上能够保护医疗数据的隐私,同时可提供具有较高准确性的聚类结果,具有潜在的应用前景和市场价值。 展开更多
关键词 高斯核函数 差分隐私技术 聚类算法 模糊C均值聚类算法 隐私预算
下载PDF
基于改进K-means聚类算法的网络异常数据挖掘与分类方法
11
作者 贺萌 《无线互联科技》 2024年第18期119-122,共4页
为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类... 为了解决网络异常数据挖掘过程中漏报率、误报率较高的问题,文章提出一种基于改进K-means聚类算法的网络异常数据挖掘与分类方法。文章通过构建并行化频繁项集挖掘环境加速数据处理,利用局部离群点检测剔除异常值,同时引入K-means聚类对数据的最大最小距离展开计算,融合隶属度函数与密度峰值优化算法,改进聚类初始中心选择及簇边界调整,从而提高异常识别准确性和分类效率。通过实验结果证明,该方法能够明显改善聚类效果与性能。 展开更多
关键词 K-MEANS聚类算法 网络异常 数据挖掘 数据分 离群点检测
下载PDF
凝聚式层次聚类算法在露天采矿MILP数学模型中的应用实践
12
作者 林炜 《中国矿山工程》 2024年第2期12-16,共5页
本文采用凝聚式层次聚类算法对块体数据进行预处理,显著降低了混合整数线性规划(MILP)数学模型在矿业应用中的复杂度,以解决矿业排产优化中的复杂问题。该方法的核心在于根据块体的地质和采矿相关属性的相似性,将大量小块体合理聚合成... 本文采用凝聚式层次聚类算法对块体数据进行预处理,显著降低了混合整数线性规划(MILP)数学模型在矿业应用中的复杂度,以解决矿业排产优化中的复杂问题。该方法的核心在于根据块体的地质和采矿相关属性的相似性,将大量小块体合理聚合成相对较少的大聚合单元,从而简化了模型的变量和约束条件,减少了求解优化问题所需的计算资源和时间。通过某大型露天金矿采矿联合体的应用案例研究,证明了凝聚式层次聚类算法在实践中的有效性。原始的MILP模型由于块体数量巨大和计算复杂度高无法直接求解。应用聚类算法后,将36183个块体合理减少到5810个聚合单元,显著降低了问题的规模。 展开更多
关键词 混合整数线性规划 聚类算法 采矿 优化
下载PDF
基于VMD和改进聚类算法的配电网故障选线方法 被引量:1
13
作者 王远川 李泽文 +2 位作者 夏翊翔 毛紫玲 郭欣玉 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期9-18,共10页
为提高小电流接地系统单相接地故障的选线准确率,设计了一种基于调幅调频函数的变分模态分解VMD(variational mode decomposition)与K-means++聚类算法相结合的故障选线方案。对故障发生后各条线路零序电流信号进行VMD分解,得到多个自... 为提高小电流接地系统单相接地故障的选线准确率,设计了一种基于调幅调频函数的变分模态分解VMD(variational mode decomposition)与K-means++聚类算法相结合的故障选线方案。对故障发生后各条线路零序电流信号进行VMD分解,得到多个自适应频带特征的本征模态函数;构造以低频分量的波形相关系数为横坐标和以高频分量初始极性为纵坐标的二维平面,在该二维平面绘制代表各出线的散点分布图;最后通过K-means++聚类算法对所构造的散点点集进行聚类分析,利用代表故障线路的散点属于离群点的特点,筛选出故障线路。通过Pscad软件进行仿真验证,结果表明,该故障选线方法不受条件改变的影响,能够实现对故障线路的准确识别,具有较好的抗噪能力。 展开更多
关键词 故障选线 变分模态分解 聚类算法 小电流接地系统 离群点
下载PDF
融合优化可调Q因子小波变换的改进密度峰值聚类算法 被引量:1
14
作者 史曼曼 宋朝炀 张景祥 《计算机应用研究》 CSCD 北大核心 2024年第2期466-472,共7页
为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化... 为提升时间序列的聚类精度,提出一种融合优化可调Q因子小波变换的改进密度峰值聚类(improved density peaks clustering based on optimal tunable Q-factor wavelet transform,OTQWT-IDPC)算法,该算法利用可调Q因子小波变换的能量优化选择策略及改进粒子群优化算法确定的最佳Q因子分解时序信号,通过最优特征子带的能量、均值、标准差和模糊熵构建特征子空间,并采用主成分分析降低特征维度,以减少特征冗余。同时,考虑到距离较远而周围密集程度较大的K近邻样本对局部密度的贡献率,引入权重系数及K近邻重新定义DPC的局部密度,并利用共享最近邻描述样本间的相似性。在BONN癫痫脑电信号和CWRU滚动轴承数据集上进行对比实验,结果表明,该算法的聚类精度分别为95%、94%,且Jacarrd、FMI和F_(1)值指标均优于其他对比算法,证明了OTQWT-IDPC算法的有效性。 展开更多
关键词 密度峰值聚类算法 可调Q因子小波变换 粒子群优化算法 主成分分析
下载PDF
基于K-modes聚类算法的山东省传统村落空间风貌类型及区划研究 被引量:1
15
作者 范勇 李玄 肖文杰 《小城镇建设》 2024年第5期100-107,共8页
传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-mo... 传统村落的类型解析及空间区划是开展传统村落整体性保护和区域性发展的基础前提,本文在对山东省传统村落调查的基础上,基于空间基因理论视角,从地景、聚落、建筑、文化4个层次构建起13个指标的传统村落空间风貌分类指标体系,并采用K-modes聚类算法对山东省177个传统村落进行聚类分析,得到八大空间风貌类型,进一步结合区域文化、地理特点及行政区划,划分出山东省5个传统村落风貌区,从宏观视角分析了山东省传统村落空间风貌特征及其形成与发展的内在逻辑和地理分布规律,为更加整体全面地认识山东省传统村落特点、开展区域性传统村落集中连片保护利用等工作提供科学参考。 展开更多
关键词 传统村落 空间基因 K-modes聚类算法 空间区划 山东省
下载PDF
基于改进模糊聚类算法的大数据随机挖掘仿真 被引量:1
16
作者 李萍 刘金金 《计算机仿真》 2024年第2期496-499,521,共5页
大数据挖掘是从大量有噪声的、随机模糊的大数据中提取有价值信息的过程,由于海量大数据具有多维性、稀疏性以及动态性等特点,准确获取其分布特征的难度较大,随机挖掘难以直接实现。为此提出基于改进模糊聚类算法的大数据随机挖掘方法... 大数据挖掘是从大量有噪声的、随机模糊的大数据中提取有价值信息的过程,由于海量大数据具有多维性、稀疏性以及动态性等特点,准确获取其分布特征的难度较大,随机挖掘难以直接实现。为此提出基于改进模糊聚类算法的大数据随机挖掘方法。利用建立的语义概念树模型获取大数据的特征分布关系,并根据模糊语义分析法得出大数据的语义相似性、关联性条件,提取大数据特征。优先确定最佳聚类数,采用改进模糊聚类算法对其聚类,实现基于改进模糊算法的大数据随机挖掘。实验结果表明,上述方法的大数据模糊聚类效果较好,随机挖掘准确率可达到95%以上,实验所得结果验证了上述方法较强的应用有效性。 展开更多
关键词 改进模糊聚类算法 大数据随机挖掘 语义概念树 特征提取 特征
下载PDF
基于聚类算法的热试验加热器布局设计与优化
17
作者 龚喆 侯雅琴 +4 位作者 李西园 吴东亮 邵华 高庆华 李琼 《航天器环境工程》 CSCD 2024年第4期421-429,共9页
针对目前航天器热试验中热流模拟需求复杂、加热回路设计效率低以及不易量化等问题,文章以某型号中的一组热控模拟件为典型对象,通过有限元方法建立不同特征长度组件和薄膜电加热器组合所对应的温度不均匀度模型;提出基于温度不均匀度... 针对目前航天器热试验中热流模拟需求复杂、加热回路设计效率低以及不易量化等问题,文章以某型号中的一组热控模拟件为典型对象,通过有限元方法建立不同特征长度组件和薄膜电加热器组合所对应的温度不均匀度模型;提出基于温度不均匀度距离的聚类方法,并开展基于MATLAB的聚类仿真。与欧几里得距离聚类的对比表明,在同等条件下温度不均匀度距离算法可将温度不均匀度降低30%左右。此外,对比了聚类簇数、加热表面细分数及待加热表面数量等参数对聚类结果和温度不均匀度的影响,可为未来热试验中的加热回路布局设计与优化提供参考。 展开更多
关键词 航天器热试验 聚类算法 薄膜电加热器 热设计 温度不均匀度
下载PDF
一种基于改进差分进化的K-Means聚类算法研究
18
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 K-MEANS聚类算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 中心优化
下载PDF
基于遗传粒子群动态聚类算法的物流柔性分拣系统品规分配
19
作者 杜佳奇 杨旭东 +2 位作者 孙栋 张磊 王晋冰 《包装工程》 CAS 北大核心 2024年第5期126-134,共9页
目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态... 目的针对目前烟草物流配送中心条烟分拣量大,不同条烟品规的分配对订单的总处理时间影响较大的问题,研究平衡各个分拣区品规的分配,提高分拣效率。方法建立以各分区品规相似系数和最小为目标函数的数学模型,并采用改进的遗传粒子群动态聚类(GAPSO-K)算法进行求解。首先,结合各品规分拣量对品规相似系数进行改进,并将其作为适应度函数;然后在粒子群算法中对惯性权重因子进行改进,使其值可以进行自适应改变;最后,在粒子群动态聚类算法中引入遗传算法中的交叉变异扩大解的搜索范围,基于Matlab对文中的其他算法进行求解对比,求得结果在EM-plant中进行仿真验证。结果结合某烟草物流配送中心数据仿真验证,利用GAPSO-K算法处理订单的时间为234.5 s,较传统时间大幅度较少,有效提升了柔性物流分拣效率。结论采用该算法可充分发挥2种算法的优良性,具有更好的收敛性及寻优性,为柔性物流品规分配提供了新思路。 展开更多
关键词 品规分配 品规相似系数 惯性权重因子 遗传粒子群动态聚类算法
下载PDF
基于强化学习的聚类算法
20
作者 李佳辉 徐应涛 张莹 《计算机科学与应用》 2024年第7期114-120,共7页
创新性地将强化学习技术引入聚类算法中,旨在解决传统聚类方法面临的两大难题:初始聚类中心选择的不确定性以及计算过程中欧氏距离划分样本导致的高时间复杂度。通过引入强化学习的奖惩机制,设计了一种基于“代理”Agent的行为选择策略... 创新性地将强化学习技术引入聚类算法中,旨在解决传统聚类方法面临的两大难题:初始聚类中心选择的不确定性以及计算过程中欧氏距离划分样本导致的高时间复杂度。通过引入强化学习的奖惩机制,设计了一种基于“代理”Agent的行为选择策略,有效替代了传统的欧氏距离计算过程,从而消除了初始聚类中心对算法稳定性的潜在影响,并大幅提升了算法的收敛速度。提出了一种全新的基于强化学习的聚类算法,不仅在数学上严谨证明了其收敛性,而且在实际应用中展现了显著优势。通过数值实验验证,该算法在聚类准确率上较传统方法有明显提升,同时在算法性能上也表现出更加优越的特点,这一研究对于提升数据处理效率和准确性具有重要意义。 展开更多
关键词 聚类算法 强化学习 贪婪策略 奖惩机制 强化信号 RLC算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部