AIM: To determine the expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis and its clinical significance. METHODS: A cervical spondylosis model was established in rats by d...AIM: To determine the expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis and its clinical significance. METHODS: A cervical spondylosis model was established in rats by destroying the stability of cervical posterior column,and the cord segments C4-6 and gastric antrum were collected 3, 4 and 5 mo after the operation. Rats with sham operation were used as controls. c-fos neuronal counter-staining was performed with an immunohistochemistry method. Every third sections from C4-6 segments were drawn. The 10 most labeled c-fos-immunoreactive (Fos-IR) neurons were counted, and the average number was used for statistical analysis. The mean of Fos-IR neurons in myenteric plexus was calculated after counting Fos-IR neurons in 25 ganglia from each antral preparation, and expressed as a mean count per myenteric ganglion.RESULTS: There were a few c-fos-positive neurons in the cervical cord and antrum in the control group. There was an increased c-fos expression in model group 3, 4 and 5 mo after operation, whereas there was no significant increase in c-fos expression in the control group at 3, 4 and 5 mo.More importantly, there was a significant difference in c-fos expression between rats followed up for 3 mo and those for 5 mo in the model group (11.20±2.26 vs 27.68±4.36,P<0.05, for the cervical cord; and 11.3±2.3 vs 29.3±4.6,P<0.05, for the gastric antrum). There was no significant difference between rats followed up for 3 mo and those for 4 mo and between rats followed up for 4 mo and those for 5 mo in the model group.CONCLUSION: c-fos expression in gastric myenteric plexus was dramatically associated with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis. If this hypothesis is confirmed by further studies, functional gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome could be explained by neurogastroenterology.展开更多
AIM: To evaluate the effects of protein deprivation on the myenteric plexus of the esophagus of weanling rats. METHODS: Pregnant female Wistar rats were divided into 2 groups: nourished (N),receiving normal diet,and u...AIM: To evaluate the effects of protein deprivation on the myenteric plexus of the esophagus of weanling rats. METHODS: Pregnant female Wistar rats were divided into 2 groups: nourished (N),receiving normal diet,and undernourished (D),receiving a protein-deprived diet,which continued after birth. At twenty-one days of age,13 esophagi from each group were submitted to light microscopy and morphometrical analysis employing the NADH diaphorase,NADPH diaphorase and acetylcholinesterase techniques. Three other esophagi from each group were evaluated with transmission electron microscopy (TEM). RESULTS: In both the NADH- and the NADPH-reactive mounts,the neurons of the N mounts were more intensely stained,while in the D esophagi only the larger neurons were reactive. Many myenteric neurons of N were intensely reactive for AChE activity but only a few neurons of D exhibited these aspects. Ultrastructural analysis revealed that the granular reticulum of N showed large numbers of ribosomes aligned on the outer surface of its regularly arranged membrane while the ribosomes of D were disposed in clusters. The chromatin was more homogeneously scattered inside the neuron nucleus of N as well as the granular component of the nucleolus was evidently more developed in this group. Statistically significant differences between N and D groups were detected in the total estimated number of neurons stained by the NADPH technique. CONCLUSION: The morphological and quantitative data shows that feeding with protein-deprived diet in 21-d old rats induces a delay in the development of the myenteric neurons of the esophagus.展开更多
基金Supported by the Medical Research Fund of Guangdong Province, No. A2004434
文摘AIM: To determine the expression of c-fos in gastric myenteric plexus and spinal cord of rats with cervical spondylosis and its clinical significance. METHODS: A cervical spondylosis model was established in rats by destroying the stability of cervical posterior column,and the cord segments C4-6 and gastric antrum were collected 3, 4 and 5 mo after the operation. Rats with sham operation were used as controls. c-fos neuronal counter-staining was performed with an immunohistochemistry method. Every third sections from C4-6 segments were drawn. The 10 most labeled c-fos-immunoreactive (Fos-IR) neurons were counted, and the average number was used for statistical analysis. The mean of Fos-IR neurons in myenteric plexus was calculated after counting Fos-IR neurons in 25 ganglia from each antral preparation, and expressed as a mean count per myenteric ganglion.RESULTS: There were a few c-fos-positive neurons in the cervical cord and antrum in the control group. There was an increased c-fos expression in model group 3, 4 and 5 mo after operation, whereas there was no significant increase in c-fos expression in the control group at 3, 4 and 5 mo.More importantly, there was a significant difference in c-fos expression between rats followed up for 3 mo and those for 5 mo in the model group (11.20±2.26 vs 27.68±4.36,P<0.05, for the cervical cord; and 11.3±2.3 vs 29.3±4.6,P<0.05, for the gastric antrum). There was no significant difference between rats followed up for 3 mo and those for 4 mo and between rats followed up for 4 mo and those for 5 mo in the model group.CONCLUSION: c-fos expression in gastric myenteric plexus was dramatically associated with that in the spinal cord in rats with cervical spondylosis, suggesting that the gastrointestinal function may be affected by cervical spondylosis. If this hypothesis is confirmed by further studies, functional gastrointestinal diseases such as functional dyspepsia and irritable bowel syndrome could be explained by neurogastroenterology.
文摘AIM: To evaluate the effects of protein deprivation on the myenteric plexus of the esophagus of weanling rats. METHODS: Pregnant female Wistar rats were divided into 2 groups: nourished (N),receiving normal diet,and undernourished (D),receiving a protein-deprived diet,which continued after birth. At twenty-one days of age,13 esophagi from each group were submitted to light microscopy and morphometrical analysis employing the NADH diaphorase,NADPH diaphorase and acetylcholinesterase techniques. Three other esophagi from each group were evaluated with transmission electron microscopy (TEM). RESULTS: In both the NADH- and the NADPH-reactive mounts,the neurons of the N mounts were more intensely stained,while in the D esophagi only the larger neurons were reactive. Many myenteric neurons of N were intensely reactive for AChE activity but only a few neurons of D exhibited these aspects. Ultrastructural analysis revealed that the granular reticulum of N showed large numbers of ribosomes aligned on the outer surface of its regularly arranged membrane while the ribosomes of D were disposed in clusters. The chromatin was more homogeneously scattered inside the neuron nucleus of N as well as the granular component of the nucleolus was evidently more developed in this group. Statistically significant differences between N and D groups were detected in the total estimated number of neurons stained by the NADPH technique. CONCLUSION: The morphological and quantitative data shows that feeding with protein-deprived diet in 21-d old rats induces a delay in the development of the myenteric neurons of the esophagus.