本研究聚焦于典型金属与非金属防刺服的防刺层,通过对比金属合金防刺材料与芳纶纤维机织浸胶防刺材料的测试表现,系统分析了两者在防刺性能、弯曲性能和能量吸收性能上的差异。结果表明,两种材质均能抵御24焦耳撞击能量的刀具穿刺,金属...本研究聚焦于典型金属与非金属防刺服的防刺层,通过对比金属合金防刺材料与芳纶纤维机织浸胶防刺材料的测试表现,系统分析了两者在防刺性能、弯曲性能和能量吸收性能上的差异。结果表明,两种材质均能抵御24焦耳撞击能量的刀具穿刺,金属合金材质能钝化刀尖但面内穿透后保护力较弱;在弯曲性能上,金属合金防刺层展现出更佳的柔韧性和可弯曲性,所需弯曲力20 N~25 N显著小于芳纶纤维机织防刺层68 N~72 N。能量吸收测试中,金属合金防刺层在钝器冲击下的能量吸收能力略胜一筹,归因于其不可逆形变对冲击动能的有效吸收。研究为防刺服材料选择和优化设计提供了实证支持,并指出了两种材料在不同防护需求下的优势与局限,为防护装备的创新发展提供了科学依据。This study focuses on the anti puncture layers of typical metal and non-metal anti puncture clothing. By comparing the test performance of metal alloy anti puncture materials and aramid fiber machine woven impregnated anti puncture materials, the differences in anti puncture performance, bending performance, and energy absorption performance between the two were systematically analyzed. The results show that both materials can withstand tool piercing with 24 joules of impact energy, while the metal alloy material can passivate the tool tip but has weaker protection after in-plane penetration;in terms of bending performance, the metal alloy anti puncture layer exhibits better flexibility and bendability, with a required bending force of 20 N~25 N significantly lower than the aramid fiber woven anti puncture layer of 68 N~72 N. In the energy absorption test, the metal alloy anti puncture layer has a slightly better energy absorption ability under blunt impact, attributed to its effective absorption of impact kinetic energy by irreversible deformation. The study provides empirical support for the selection and optimization design of anti puncture clothing materials, and points out the advantages and limitations of the two materials under different protection needs, providing scientific basis for the innovative development of protective equipment.展开更多
为提高防冲支架能量吸收性能以应对煤炭资源深部开采趋势下的冲击地压频发问题,提出了一种具有圆形与多边形混合截面的多胞薄壁吸能构件应用于防冲支架立柱。基于简化超折叠单元(Simplified Super Folding Element,SSFE)理论剖析了不同...为提高防冲支架能量吸收性能以应对煤炭资源深部开采趋势下的冲击地压频发问题,提出了一种具有圆形与多边形混合截面的多胞薄壁吸能构件应用于防冲支架立柱。基于简化超折叠单元(Simplified Super Folding Element,SSFE)理论剖析了不同截面形状和肋板布局的多胞薄壁吸能构件能量耗散途径,构建了轴向压溃条件下吸能构件的能量吸收平衡方程,并推导出了等厚度和非等厚度2种吸能构件平均支反力预测公式;通过轴向压溃仿真获得了各类型多胞薄壁吸能构件吸能量曲线、支反力曲线以及屈曲变形形态,发现圆形与八边形混合截面、边延伸肋板布局的多胞薄壁吸能构件(P8-2类型)具备相对吸能优势,深入考察了内嵌管截面尺寸、薄壁管壁厚和肋板厚度对其吸能效果的影响规律,即:3种结构参数对弯曲褶皱形态和塑性铰数量影响显著,对吸能特性参数有着不同且非简单单向变化的影响趋势,同时验证了基于SSFE理论的平均支反力理论模型具有较高预测精度;依托均匀试验数据,拟合出了吸能特性参数关于构件结构参数的回归方程,并利用NSGA-II遗传算法进行优化求解,最终确定多胞薄壁吸能构件内嵌管截面尺寸为122 mm,薄壁管壁厚度为2.6 mm,肋板厚度为2.7 mm;进一步通过轴向压溃仿真验证与对比分析,结果表明:经结构参数优化后的多胞薄壁吸能构件具备更好的能量吸收效果且支反力波动较小,可使让位防冲过程更加可靠,能够为防冲吸能构件设计提供有益参考。展开更多
点阵夹芯结构因其优异的力学性能、出色的能量吸收能力、独特的功能性,被广泛应用于航空航天、汽车、船舶等领域。然而,传统点阵夹芯结构在面外压缩载荷下存在应力分布不均匀、节点应力集中等缺点。为了解决上述问题,该研究基于体心立...点阵夹芯结构因其优异的力学性能、出色的能量吸收能力、独特的功能性,被广泛应用于航空航天、汽车、船舶等领域。然而,传统点阵夹芯结构在面外压缩载荷下存在应力分布不均匀、节点应力集中等缺点。为了解决上述问题,该研究基于体心立方结构(body-centered cubic,BCC)提出了一种新型的余弦函数单元基(cosine function cell-base,CFCB)点阵结构。为了研究CFCB点阵夹芯结构面外压缩载荷下能量吸收特性,制备了CFCB点阵夹芯结构,开展了准静态压溃试验,并与BCC点阵夹芯结构的试验结果进行对比。结果表明,CFCB点阵夹芯结构面外压缩载荷下的承载与能量吸收能力明显优于BCC点阵夹芯结构。随后,基于有限元模型,系统揭示了芯子单胞直径、幅值、周期长度等胞元参数及厚度方向上的单胞层数对CFCB点阵夹芯结构面外压缩载荷下吸能特性的影响。相关研究成果有望为新型CFCB点阵夹芯结构设计提供参考。展开更多
文摘本研究聚焦于典型金属与非金属防刺服的防刺层,通过对比金属合金防刺材料与芳纶纤维机织浸胶防刺材料的测试表现,系统分析了两者在防刺性能、弯曲性能和能量吸收性能上的差异。结果表明,两种材质均能抵御24焦耳撞击能量的刀具穿刺,金属合金材质能钝化刀尖但面内穿透后保护力较弱;在弯曲性能上,金属合金防刺层展现出更佳的柔韧性和可弯曲性,所需弯曲力20 N~25 N显著小于芳纶纤维机织防刺层68 N~72 N。能量吸收测试中,金属合金防刺层在钝器冲击下的能量吸收能力略胜一筹,归因于其不可逆形变对冲击动能的有效吸收。研究为防刺服材料选择和优化设计提供了实证支持,并指出了两种材料在不同防护需求下的优势与局限,为防护装备的创新发展提供了科学依据。This study focuses on the anti puncture layers of typical metal and non-metal anti puncture clothing. By comparing the test performance of metal alloy anti puncture materials and aramid fiber machine woven impregnated anti puncture materials, the differences in anti puncture performance, bending performance, and energy absorption performance between the two were systematically analyzed. The results show that both materials can withstand tool piercing with 24 joules of impact energy, while the metal alloy material can passivate the tool tip but has weaker protection after in-plane penetration;in terms of bending performance, the metal alloy anti puncture layer exhibits better flexibility and bendability, with a required bending force of 20 N~25 N significantly lower than the aramid fiber woven anti puncture layer of 68 N~72 N. In the energy absorption test, the metal alloy anti puncture layer has a slightly better energy absorption ability under blunt impact, attributed to its effective absorption of impact kinetic energy by irreversible deformation. The study provides empirical support for the selection and optimization design of anti puncture clothing materials, and points out the advantages and limitations of the two materials under different protection needs, providing scientific basis for the innovative development of protective equipment.
文摘点阵夹芯结构因其优异的力学性能、出色的能量吸收能力、独特的功能性,被广泛应用于航空航天、汽车、船舶等领域。然而,传统点阵夹芯结构在面外压缩载荷下存在应力分布不均匀、节点应力集中等缺点。为了解决上述问题,该研究基于体心立方结构(body-centered cubic,BCC)提出了一种新型的余弦函数单元基(cosine function cell-base,CFCB)点阵结构。为了研究CFCB点阵夹芯结构面外压缩载荷下能量吸收特性,制备了CFCB点阵夹芯结构,开展了准静态压溃试验,并与BCC点阵夹芯结构的试验结果进行对比。结果表明,CFCB点阵夹芯结构面外压缩载荷下的承载与能量吸收能力明显优于BCC点阵夹芯结构。随后,基于有限元模型,系统揭示了芯子单胞直径、幅值、周期长度等胞元参数及厚度方向上的单胞层数对CFCB点阵夹芯结构面外压缩载荷下吸能特性的影响。相关研究成果有望为新型CFCB点阵夹芯结构设计提供参考。