目的探讨子宫低级别子宫内膜样癌患者淋巴脉管间隙浸润(lymphovascular space invasion,LVSI)的影响因素。方法回顾性分析2015年1月~2023年5月167例手术病理诊断低级别(G1、G2)子宫内膜样癌患者的临床资料。选择年龄、是否绝经、异常阴...目的探讨子宫低级别子宫内膜样癌患者淋巴脉管间隙浸润(lymphovascular space invasion,LVSI)的影响因素。方法回顾性分析2015年1月~2023年5月167例手术病理诊断低级别(G1、G2)子宫内膜样癌患者的临床资料。选择年龄、是否绝经、异常阴道出血时间、合并代谢综合征、CA125升高(≥35 U/ml)、子宫内膜厚度、宫腔占位、合并子宫腺肌症、国际妇产科联盟(International Federation of Gynecology and Obstetrics,FIGO)2009分期9项指标进行单因素分析,对P<0.05的因素进行二元logistic回归分析。结果167例子宫低级别子宫内膜样癌患者中,LVSI 24例(14.4%)。对单因素分析中P<0.05的4项因素(异常阴道出血时间≥4个月、CA125升高、合并子宫腺肌症、分期Ⅱ期及以上)进行二元logistic回归分析,结果显示分期Ⅱ期及以上(OR=7.357,95%CI:2.140~25.288,P=0.002),CA125升高(OR=4.883,95%CI:1.612~14.794,P=0.005)为子宫低级别子宫内膜样癌LVSI的独立预后因素。结论FIGO 2009分期Ⅱ期及以上、CA125≥35 U/ml与子宫低级别子宫内膜样癌患者LVSI有关,间接提示淋巴结转移风险,术前应高度关注,以便制定更为精准的手术方案。展开更多
目的观察基于MR-T2WI的深度迁移学习(deep transfer learning,DTL)特征、影像组学特征及临床特征构建的联合模型(列线图)在术前预测宫颈癌淋巴脉管间隙浸润(lymph vascular space invasion,LVSI)的价值。材料与方法回顾性分析178例经术...目的观察基于MR-T2WI的深度迁移学习(deep transfer learning,DTL)特征、影像组学特征及临床特征构建的联合模型(列线图)在术前预测宫颈癌淋巴脉管间隙浸润(lymph vascular space invasion,LVSI)的价值。材料与方法回顾性分析178例经术后病理证实为宫颈癌的患者病例,其中70例LVSI(+)、108例LVSI(-),按照8∶2划分为训练集[142例,54例LVSI(+)、88例LVSI(-)]和测试集[36例,16例LVSI(+)、20例LVSI(-)]。对临床因素行单因素logistic分析,筛选出LVSI(+)独立预测因素。使用DTL方法和传统影像组学方法提取矢状位T2WI图像中病灶的DTL特征和影像组学特征,构建DTL特征数据集、影像组学特征数据集和DTL特征与影像组学特征融合的数据集,分别以t检验、Pearson分析和最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归对训练集各特征数据集进行特征降维,以其最佳者构建影像组学(radiomics,Rad)模型、DTL模型、融合模型(Rad+DTL模型),并筛选最佳影像组学模型;基于上述最佳影像组学模型评分与临床独立因子构建联合模型,并绘制列线图。以校准曲线评估模型校准度,以决策曲线分析评价模型的应用价值。结果淋巴结转移、粒细胞比率均为LVSI(+)的独立预测因子(P<0.05)。Rad+DTL模型为最佳影像组学模型。联合模型在训练集和测试集中的受试者工作特征曲线下面积(area under the curve,AUC)高于Rad+DTL模型(0.984 vs.0.966,P<0.05;0.912 vs.0.759,P=0.05)。联合模型的校准度较高,临床净收益更大。结论基于MR-T2WI的DTL特征、影像组学特征联合临床特征构建的联合模型可有效预测宫颈癌LVSI。展开更多
文摘目的探讨子宫低级别子宫内膜样癌患者淋巴脉管间隙浸润(lymphovascular space invasion,LVSI)的影响因素。方法回顾性分析2015年1月~2023年5月167例手术病理诊断低级别(G1、G2)子宫内膜样癌患者的临床资料。选择年龄、是否绝经、异常阴道出血时间、合并代谢综合征、CA125升高(≥35 U/ml)、子宫内膜厚度、宫腔占位、合并子宫腺肌症、国际妇产科联盟(International Federation of Gynecology and Obstetrics,FIGO)2009分期9项指标进行单因素分析,对P<0.05的因素进行二元logistic回归分析。结果167例子宫低级别子宫内膜样癌患者中,LVSI 24例(14.4%)。对单因素分析中P<0.05的4项因素(异常阴道出血时间≥4个月、CA125升高、合并子宫腺肌症、分期Ⅱ期及以上)进行二元logistic回归分析,结果显示分期Ⅱ期及以上(OR=7.357,95%CI:2.140~25.288,P=0.002),CA125升高(OR=4.883,95%CI:1.612~14.794,P=0.005)为子宫低级别子宫内膜样癌LVSI的独立预后因素。结论FIGO 2009分期Ⅱ期及以上、CA125≥35 U/ml与子宫低级别子宫内膜样癌患者LVSI有关,间接提示淋巴结转移风险,术前应高度关注,以便制定更为精准的手术方案。
文摘目的观察基于MR-T2WI的深度迁移学习(deep transfer learning,DTL)特征、影像组学特征及临床特征构建的联合模型(列线图)在术前预测宫颈癌淋巴脉管间隙浸润(lymph vascular space invasion,LVSI)的价值。材料与方法回顾性分析178例经术后病理证实为宫颈癌的患者病例,其中70例LVSI(+)、108例LVSI(-),按照8∶2划分为训练集[142例,54例LVSI(+)、88例LVSI(-)]和测试集[36例,16例LVSI(+)、20例LVSI(-)]。对临床因素行单因素logistic分析,筛选出LVSI(+)独立预测因素。使用DTL方法和传统影像组学方法提取矢状位T2WI图像中病灶的DTL特征和影像组学特征,构建DTL特征数据集、影像组学特征数据集和DTL特征与影像组学特征融合的数据集,分别以t检验、Pearson分析和最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)回归对训练集各特征数据集进行特征降维,以其最佳者构建影像组学(radiomics,Rad)模型、DTL模型、融合模型(Rad+DTL模型),并筛选最佳影像组学模型;基于上述最佳影像组学模型评分与临床独立因子构建联合模型,并绘制列线图。以校准曲线评估模型校准度,以决策曲线分析评价模型的应用价值。结果淋巴结转移、粒细胞比率均为LVSI(+)的独立预测因子(P<0.05)。Rad+DTL模型为最佳影像组学模型。联合模型在训练集和测试集中的受试者工作特征曲线下面积(area under the curve,AUC)高于Rad+DTL模型(0.984 vs.0.966,P<0.05;0.912 vs.0.759,P=0.05)。联合模型的校准度较高,临床净收益更大。结论基于MR-T2WI的DTL特征、影像组学特征联合临床特征构建的联合模型可有效预测宫颈癌LVSI。