A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control...A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.展开更多
Electroencephalogram (EEG) is an efficient tool in exploring human brains. It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines an...Electroencephalogram (EEG) is an efficient tool in exploring human brains. It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines and human beings,namely,brain-computer interface (BCI). The purpose of this review is to illustrate the recent researches in EEG processing and EEG-based BCI. First,we outline several methods in removing artifacts from EEGs,and classical algorithms for fatigue detection are discussed. Then,two BCI paradigms including motor imagery and steady-state motion visual evoked potentials (SSMVEP) produced by oscillating Newton's rings are introduced. Finally,BCI systems including wheelchair controlling and electronic car navigation are elaborated. As a new technique to control equipments,BCI has promising potential in rehabilitation of disorders in central nervous system,such as stroke and spinal cord injury,treatment of attention deficit hyperactivity disorder (ADHD) in children and development of novel games such as brain-controlled auto racings.展开更多
A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswi...A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.展开更多
The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by hu...The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by human behavior or lack of adequate management. We therefore establish the timely monitoring indexes and control criteria of compaction processes by considering the characteristics and quality requirements of high core rockffll dam construction. Based on the established indexes and criteria, integrating GPS, GPRS and PDA technologies, a real-time compaction quality monitoring method is proposed. The relevant key techniques are proposed as well, including automatic collection of information and a graphic algorithm for rolling-process visualization. By the proposed method and techniques, a real-time monitoring system is provided to realize the precise automatic online entire-process monitoring of compaction parameters, including compaction pass, rolling trajectory, nmning speed of roller, vibration status and rolled pavement thickness. The application of the Nuozhadu project shows that the proposed system can control compaction parameters effectively and ensure better construction quality. Therefore, it might become a new way towards construction quality control of high core rockfill dam.展开更多
基金Supported by the National Natural Science Foundation of China(No.81222021,No.30970875,No.90920015,No.61172008 and No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.
基金National Natural Science Foundation of China(No.51005176)Research Fund for the Doctoral Program of Higher Education of China(No.20100201120003)
文摘Electroencephalogram (EEG) is an efficient tool in exploring human brains. It plays a very important role in diagnosis of disorders related to epilepsy and development of new interaction techniques between machines and human beings,namely,brain-computer interface (BCI). The purpose of this review is to illustrate the recent researches in EEG processing and EEG-based BCI. First,we outline several methods in removing artifacts from EEGs,and classical algorithms for fatigue detection are discussed. Then,two BCI paradigms including motor imagery and steady-state motion visual evoked potentials (SSMVEP) produced by oscillating Newton's rings are introduced. Finally,BCI systems including wheelchair controlling and electronic car navigation are elaborated. As a new technique to control equipments,BCI has promising potential in rehabilitation of disorders in central nervous system,such as stroke and spinal cord injury,treatment of attention deficit hyperactivity disorder (ADHD) in children and development of novel games such as brain-controlled auto racings.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10862001 and 10947011the Construction of Key Laboratories in Universities of Guangxi under Grant No. 200912
文摘A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51021004, 51079096)the Program for New Century Excellent Talents in University (Grant No. NCET-08-0391)
文摘The conventional quality control method of core rocldill dam construction exhibit difficulty controlling compaction parameters accurately or ensuring construction quality. This is because it is easily influenced by human behavior or lack of adequate management. We therefore establish the timely monitoring indexes and control criteria of compaction processes by considering the characteristics and quality requirements of high core rockffll dam construction. Based on the established indexes and criteria, integrating GPS, GPRS and PDA technologies, a real-time compaction quality monitoring method is proposed. The relevant key techniques are proposed as well, including automatic collection of information and a graphic algorithm for rolling-process visualization. By the proposed method and techniques, a real-time monitoring system is provided to realize the precise automatic online entire-process monitoring of compaction parameters, including compaction pass, rolling trajectory, nmning speed of roller, vibration status and rolled pavement thickness. The application of the Nuozhadu project shows that the proposed system can control compaction parameters effectively and ensure better construction quality. Therefore, it might become a new way towards construction quality control of high core rockfill dam.