The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which i...The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which is used as an indicator for the humification degree of peat.Combined with14C dating data of peat cellulose,and compared withδ18O andδ13C time series of the cellulose in the Hani peatland,the evidence for the existence of14 ka paleoclimate was provided.Higher humification degrees hint a warmer-wetter climate,and vice versa.It also reconstructs the four stages of Holocene climate evolution in this region:11.5–9.8 cal ka B.P.,warm and wet period;9.8–9.0 cal ka B.P.,cold and dry period;9.0–4.8 cal ka B.P.,warm and wet period;and 4.8–0 cal ka B.P.,warm-wet and dry-cold alternation period.Meanwhile,it is revealed that the abrupt climate shifts signals such as the "8.2 ka" event and the "4.2 ka" event.Results showed that the Hani peat humification degree is of sensitive response to paleoclimate change.Therefore,it is a feasible method to analyze the relationship between paleoclimate change and peat humification degree.展开更多
The white-rot fungus, Phanerochaete chrysosporium (P. chrysosporium), was inoculated during different phases of agricultural waste composting, and its effect on the fluorescence spectroscopy characteristics of humic a...The white-rot fungus, Phanerochaete chrysosporium (P. chrysosporium), was inoculated during different phases of agricultural waste composting, and its effect on the fluorescence spectroscopy characteristics of humic acid (HA) was studied. The results show that the emission spectra have a sharp peak at 400 nm and a broad shoulder with the maximum centered at 460 nm. The excitation spectra have two peaks and exhibit red shift (shift to longer wavelengths) at 470 nm. The synchronous scan spectra present a number of peaks and shoulders, and the peaks at shorter wavelengths disappear gradually and form a shoulder. At the final stage of composting, the fluorescence spectra have similar shapes, but the fluorescence intensities decrease. P. chrysosporium increases the degree of aromatization and polymerization of HA when it is inoculated during the second fermentation phase, while it does not produce an obvious change on the humification degree of HA when it is inoculated during the first fermentation phase. Compared with the fluorescence spectroscopy characteristics of HA from soil, the structure of HA from compost is simpler and the activity is higher.展开更多
It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and it...It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indi- cate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O-A ratios of HAs, TOCs and HA yields of bulk soil samples, neverthe- less, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O-A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and character- istics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution char- acteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the differentdistributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.展开更多
In this article we report a new and sensitive palaeoclimate proxy indieator-humification degrees of peat. Based on the comparison of humification degrees with other climate proxy records, such as δ^13C time series of...In this article we report a new and sensitive palaeoclimate proxy indieator-humification degrees of peat. Based on the comparison of humification degrees with other climate proxy records, such as δ^13C time series of the C. mulieensis remains cellulose in the same peat profile, we suggest that humifieation degrees of peat in Qinghai-Xizang Plateau can served as a palaeoclimate proxy indicator. The higher the hnmification degrees of peat, the warmer-wetter the climate; on the contrary, the lower the humification degrees, the colder-drier the climate. Due to the simple method of deter-mination, humifieation degree of peat is worthy studying and applying further.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.41072023)
文摘The humification degree of peat is a significant climatic proxy for paleoclimate change.Using the alkali-extraction method,a time series of absorbance values of the Hani peatland,Northeast China,was determined,which is used as an indicator for the humification degree of peat.Combined with14C dating data of peat cellulose,and compared withδ18O andδ13C time series of the cellulose in the Hani peatland,the evidence for the existence of14 ka paleoclimate was provided.Higher humification degrees hint a warmer-wetter climate,and vice versa.It also reconstructs the four stages of Holocene climate evolution in this region:11.5–9.8 cal ka B.P.,warm and wet period;9.8–9.0 cal ka B.P.,cold and dry period;9.0–4.8 cal ka B.P.,warm and wet period;and 4.8–0 cal ka B.P.,warm-wet and dry-cold alternation period.Meanwhile,it is revealed that the abrupt climate shifts signals such as the "8.2 ka" event and the "4.2 ka" event.Results showed that the Hani peat humification degree is of sensitive response to paleoclimate change.Therefore,it is a feasible method to analyze the relationship between paleoclimate change and peat humification degree.
基金Project(2005CB724203) supported by the Major State Basic Research and Development Program of ChinaProject(IRT0719) supported by the Program for Changjiang Scholars and Innovative Research Team in University of China+1 种基金Projects(50608029,50808073) supported by the National Natural Science Foundation of ChinaProject(2007185) supported by the Environmental Protection Technology Research Program of Hunan Province,China
文摘The white-rot fungus, Phanerochaete chrysosporium (P. chrysosporium), was inoculated during different phases of agricultural waste composting, and its effect on the fluorescence spectroscopy characteristics of humic acid (HA) was studied. The results show that the emission spectra have a sharp peak at 400 nm and a broad shoulder with the maximum centered at 460 nm. The excitation spectra have two peaks and exhibit red shift (shift to longer wavelengths) at 470 nm. The synchronous scan spectra present a number of peaks and shoulders, and the peaks at shorter wavelengths disappear gradually and form a shoulder. At the final stage of composting, the fluorescence spectra have similar shapes, but the fluorescence intensities decrease. P. chrysosporium increases the degree of aromatization and polymerization of HA when it is inoculated during the second fermentation phase, while it does not produce an obvious change on the humification degree of HA when it is inoculated during the first fermentation phase. Compared with the fluorescence spectroscopy characteristics of HA from soil, the structure of HA from compost is simpler and the activity is higher.
基金supported by National Major Research Program of China(2013CB956702)the National Science Foundation of China(41273149,41173129)+1 种基金the Science Foundation of Guizhou Province(20113109)the 100-Talent Program of CAS
文摘It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indi- cate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O-A ratios of HAs, TOCs and HA yields of bulk soil samples, neverthe- less, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O-A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and character- istics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution char- acteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the differentdistributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.
文摘In this article we report a new and sensitive palaeoclimate proxy indieator-humification degrees of peat. Based on the comparison of humification degrees with other climate proxy records, such as δ^13C time series of the C. mulieensis remains cellulose in the same peat profile, we suggest that humifieation degrees of peat in Qinghai-Xizang Plateau can served as a palaeoclimate proxy indicator. The higher the hnmification degrees of peat, the warmer-wetter the climate; on the contrary, the lower the humification degrees, the colder-drier the climate. Due to the simple method of deter-mination, humifieation degree of peat is worthy studying and applying further.