文摘半挂车辆的非稳定运动学特性为其泊车过程中自主运动规划带来严峻挑战。针对半挂车在多障碍物的静态场景中泊车运动规划算法效率低、结果平滑性差等问题,本文提出了序列式运动规划方法(sequential motion planning algorithm,SMPA)。首先,提出了基于二次规划策略和改进双向快速扩展随机树(bidirectional rapidly-exploring random tree algorithm,Bi-RRT)的初始路径生成方法。然后,结合车辆非完整微分约束下的路径节点可行性判别方法研究,提出基于概率的目标偏向采样策略,提高了采样效率。最后,构建了面向车辆系统控制变量连续性的非线性最优化控制模型,解决泊车换向点的对接问题,提高了泊车轨迹平滑性。仿真结果表明,该方法在多障碍物场景中,规划时间相比Hybrid A*和Bi-RRT分别降低了86.71%和21.44%,轨迹质量也更具优越性。