期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
自回归求和移动平均乘积季节模型在西安地区出生缺陷预测中的应用 被引量:11
1
作者 张丽 米白冰 +7 位作者 相晓妹 宋辉 董敏 张水平 章琦 王玲玲 屈鹏飞 党少农 《西安交通大学学报(医学版)》 CAS CSCD 北大核心 2017年第3期371-374,426,共5页
目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟... 目的应用自回归求和移动平均(ARIMA)乘积季节模型预测西安市出生缺陷的发生率。方法利用2009年10月至2015年8月出生缺陷监测数据对西安市出生缺陷发生率数据构建ARIMA乘积季节模型,同时利用2015年9月至12月实际出生缺陷发生率与模型拟合数据进行比较,评价模型的预测性能,并预测西安市2016年的出生缺陷发生率。结果西安市出生缺陷的发生率具有一定的趋势及季节性,建立了ARIMA(0,0,1)(0,1,1)12乘积季节模型,利用2015年9月至12月拟合值与实际出生缺陷发生率比较,绝对误差的平均9.5,相对误差的平均0.084,提示ARIMA(0,0,1)(0,1,1)12乘积季节模型具有较佳的预测能力。预测2016年西安市出生缺陷发生率与2015年接近,总体略有抬升,但峰值下降。结论 ARIMA(0,0,1)(0,1,1)12乘积季节模型可用于西安市出生缺陷发生率的预测。 展开更多
关键词 出生缺陷 自回归求和移动平均乘积季节模型 预测
下载PDF
自回归求和移动平均模型在湖南省食物中毒预测中的应用 被引量:7
2
作者 陈玲 徐慧兰 《中南大学学报(医学版)》 CAS CSCD 北大核心 2012年第2期142-146,共5页
目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的... 目的:探索自回归求和移动平均模型(autoregressive integrated moving average,ARIMA)在湖南省食物中毒预测中的应用,为食物中毒的预防和控制提供依据。方法:收集2003年1月至2009年12月湖南省食物中毒人数进行ARIMA模型拟合,用2010年的中毒资料验证模型的预测效果,并预测2011年湖南省食物中毒人数。结果:ARIMA(0,1,1)(0,1,1)12较好地拟合了既往时间段中毒人数的时间序列,拟合预测误差为9.59%,2011年湖南省食物中毒预测人数为834人。结论:ARIMA预测模型能较好地拟合短期内食物中毒人数在时间序列上的变化趋势,若用于长期预测,应根据长期监测数据不断调整模型参数。 展开更多
关键词 自回归求和移动平均模型 食物中毒 预测
下载PDF
自回归求和移动平均模型在湖北省戊型病毒性肝炎发病率预测中的应用 被引量:3
3
作者 严婧 杜玉开 杨北方 《郑州大学学报(医学版)》 CAS 北大核心 2017年第3期290-295,共6页
目的:应用自回归求和移动平均模型(ARIMA模型)对湖北省戊型病毒性肝炎疫情报告数据进行分析、预测,为戊型病毒性肝炎的监测、预警提供理论依据。方法:采用SAS 9.2对2004年1月至2015年12月湖北省戊型病毒性肝炎的报告疫情数据进行ARIMA... 目的:应用自回归求和移动平均模型(ARIMA模型)对湖北省戊型病毒性肝炎疫情报告数据进行分析、预测,为戊型病毒性肝炎的监测、预警提供理论依据。方法:采用SAS 9.2对2004年1月至2015年12月湖北省戊型病毒性肝炎的报告疫情数据进行ARIMA模型的参数估计、拟合检验,预测2016年1月至12月戊型病毒性肝炎的月发病数,并用实际数据验证评估预测效果。结果:ARIMA(1,1,1)×(0,1,1)12模型拟合误差RMSE为0.045,2016年1月至12月戊型病毒性肝炎预测值平均相对误差为14.23%,能较好地拟合原始序列数据,预测精度较高。结论:ARIMA模型对湖北省戊型病毒性肝炎报告发病率短期预测精度良好,具有实际应用价值。 展开更多
关键词 戊型病毒性肝炎 自回归求和移动平均模型 发病率 预测 湖北省
下载PDF
利用ARIMA(自回归移动平均)模型对跑道侵入事件的分析及预测 被引量:8
4
作者 高扬 李阳 《中国安全科学学报》 CAS CSCD 2008年第11期25-30,共6页
综合运用具有相当精度的时间序列分析方法,建立美国民航运输安全中的机场跑道侵入的AR IMA(自回归移动平均)模型,克服了样本空间总是有限带来的不足,揭示出民航跑道侵入的动态变化规律,并对未来美国民航跑道侵入事故发生次数进行较准确... 综合运用具有相当精度的时间序列分析方法,建立美国民航运输安全中的机场跑道侵入的AR IMA(自回归移动平均)模型,克服了样本空间总是有限带来的不足,揭示出民航跑道侵入的动态变化规律,并对未来美国民航跑道侵入事故发生次数进行较准确的预测,为我国民航部门科学地制定飞行计划、人员培训、提高安全管理水平,提供可靠的依据。 展开更多
关键词 时间序列分析 跑道侵入 arima(自回归移动平均)模型 社会科学统计软件包(SPSS) 美国联邦航空局(FAA)
下载PDF
基于数据挖掘及自回归积分移动平均模型预测的医用耗材库存智能化管理研究 被引量:1
5
作者 徐嘉彬 傅歆 +1 位作者 刘林 高述桥 《中国医学装备》 2023年第11期143-146,共4页
目的:基于自回归积分移动平均(ARIMA)构建医用耗材ARIMA模型,为医用耗材库存管理中的各项决策提供技术支持。方法:采用数据挖掘技术中的时间序列分析方法对医用耗材库存进行预测,通过构建医用耗材ARIMA模型分析医用耗材库存变化趋势,预... 目的:基于自回归积分移动平均(ARIMA)构建医用耗材ARIMA模型,为医用耗材库存管理中的各项决策提供技术支持。方法:采用数据挖掘技术中的时间序列分析方法对医用耗材库存进行预测,通过构建医用耗材ARIMA模型分析医用耗材库存变化趋势,预测未来一段时间内医用耗材库存可能出现的结果。选取2018-2021年医院医用耗材每月库存数据,根据2018年1月至2021年7月医院医用耗材每月的库存数据构建医用耗材ARIMA模型,对2021年8-12月的医用耗材每月库存数据进行模型验证和数据预测。结果:建立的医用耗材最优模型为ARIMA(5,1,2)(1,1,1),模型平均绝对误差为7.46%;采用该模型预测2021年8-12月的医用耗材库存量与实际医用耗材库存量比较接近,平均绝对百分比误差(MAPE)为2.075%,模型拟合效果较好。结论:基于数据挖掘技术构建的医用耗材ARIMA模型,可指导决策者根据预测值对医用耗材进行采购,一定程度上降低医用耗材积压率和断货率,减少客观因素引起的医用耗材损耗率。 展开更多
关键词 数据挖掘 自回归积分移动平均(arima)模型 医用耗材库 智能化管理
下载PDF
求和自回归移动平均模型与动态回归模型预测产超广谱β-内酰胺酶肺炎克雷伯菌的检出率
6
作者 王升 杨金兰 +4 位作者 陈瑞 陈建华 刘如品 杜秋争 荆自伟 《西北药学杂志》 CAS 2022年第2期159-165,共7页
目的分析产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌的检出率,分别运用求和自回归移动平均(ARIMA)模型和动态回归模型建模并预测其流行趋势,为耐药菌株的科学防控提供参考依据。方法收集2014~2019年医院产ESBLs肺炎克雷伯菌检出率的季度... 目的分析产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌的检出率,分别运用求和自回归移动平均(ARIMA)模型和动态回归模型建模并预测其流行趋势,为耐药菌株的科学防控提供参考依据。方法收集2014~2019年医院产ESBLs肺炎克雷伯菌检出率的季度监测数据,对其建立单纯ARIMA模型。考察产ESBLs肺炎克雷伯菌检出率与抗菌药物使用频度(DDDs)的相关性,以与产ESBLs肺炎克雷伯菌检出率显著相关的DDDs作为输入变量,对产ESBLs肺炎克雷伯菌检出率建立含输入变量的动态回归模型。分别运用所建立的模型预测2020年第1季度至2020年第4季度产ESBLs肺炎克雷伯菌检出率。运用最小信息量(AIC)准则对ARIMA模型和动态回归模型分别筛选最优模型,并比较2种模型的拟合效果。以2020年第1季度至2020年第4季度产ESBLs肺炎克雷伯菌检出率的实际数据验证和比较2种模型的预测有效性和准确性。结果产ESBLs肺炎克雷伯菌检出率与同期哌拉西林舒巴坦DDDs呈正相关(r=0.75,P<0.05)。最终对ESBLs肺炎克雷伯菌检出率建立了单纯ARIMA(1,0,0)模型(AIC=175.75)和以哌拉西林舒巴坦DDDs为输入变量的动态回归模型(AIC=171.40)。2种模型的4期预测平均相对误差分别为25.62%、25.22%。结论建立的单纯ARIMA模型和动态回归模型均能有效预测产ESBLs肺炎克雷伯菌的检出率。动态回归模型的拟合和预测效果在一定程度上优于单纯ARIMA模型。 展开更多
关键词 肺炎克雷伯菌 产超广谱β-内酰胺酶(ESBLs) 求和自回归移动平均(arima)模型 动态回归模型
下载PDF
基于小波变换与差分自回归移动平均模型的微博话题热度预测 被引量:13
7
作者 陈羽中 方明月 +1 位作者 郭文忠 郭昆 《模式识别与人工智能》 EI CSCD 北大核心 2015年第7期586-594,共9页
研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热... 研究话题热度预测问题对于网络广告传播效应最大化、网络舆论引导与控制等具有重要意义.首先,根据用户关系及话题因素计算用户影响力,进而定义话题影响力.然后,基于老化理论并考虑话题影响力和话题相关微博数定义话题能量值,量化话题热度.最后,提出基于小波变换与差分自回归移动平均模型的微博话题热度预测方法,以此预测话题热度(能量值)及话题能量峰值.实验表明,文中方法可有效预测话题热度及峰值,具有较低的残差和遗漏率. 展开更多
关键词 话题热度预测 用户影响力 老化理论 小波变换 差分自回归移动平均模型(arima)
下载PDF
改进的差分自回归移动平均模型的共轭梯度参数估计法 被引量:6
8
作者 单锐 刘雅宁 刘文 《河南科技大学学报(自然科学版)》 CAS 北大核心 2015年第4期85-90,9,共6页
为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局... 为了提高差分自回归移动平均模型的拟合精度,本文结合已有的文献,借助无约束优化方法来解决此模型中的参数估计问题。主要提出了一种改进的差分自回归移动平均模型参数的优化估计法,并对提出的算法进行详细说明,在强Wolfe条件下对全局收敛性进行了证明。该方法保证了迭代计算的收敛性,并且提高了收敛的速度。数值试验结果说明:该算法是一种较为有效的方法,与其他方法比较,参数估计值更为显著,提高了预测精度。 展开更多
关键词 差分自回归移动平均模型(arima模型) 自回归滑动平均模型(ARMA模型) 参数估计 无约束问题 共轭梯度法 WOLFE搜索
下载PDF
时间序列自回归移动平均模型在临床红细胞用量预测中的应用 被引量:16
9
作者 叶柱江 刘赴平 《中国输血杂志》 CAS CSCD 北大核心 2013年第2期131-134,共4页
目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过... 目的验证自回归移动平均模型(ARIMA)预测临床红细胞用量的可行性,并为血站制定备血计划提供数据支持。方法选择东莞市2006年1月~2011年12月6年的每月临床红细胞用量作为时间序列模型的数据源。利用SPSS软件进行时间序列模型的构建,通过对2012年的前5个月临床红细胞实际用量进行模型检验。并据此对模型预测临床红细胞用量分析的可行性、建模步骤及准确性验证进行了探讨。结果 ARIMA模型计算出的预测值与实际值拟合较好,相对误差较小。1月份相对误差为-6.32%,2月份为13.28%,3月份为7.78%,4月份为3.73%,5月份为3.78%,平均相对误差为4.45%。结论可以应用时间序列自回归移动平均模型对未来的临床红细胞用量进行预测,为血站制定备血计划提供可靠的参考依据。 展开更多
关键词 时间序列 自回归移动平均模型(arima) 预测 红细胞用量
下载PDF
求和自回归移动平均乘积季节模型在北京市非职业性一氧化碳中毒事件预测中的应用
10
作者 张永强 王薇 +4 位作者 孙秀梅 杜世昌 卜凡 高群 孙鑫贵 《中国工业医学杂志》 CAS 2024年第1期83-86,F0003,共5页
构建时间序列分析求和自回归移动平均(ARIMA)乘积季节模型,模拟并预测北京市非职业性一氧化碳(CO)中毒事件的发生趋势。采用SPSS 21.0软件对2012年1月—2022年9月北京市发生的非职业性CO中毒事件进行ARIMA模型拟合,预测2022年10月—2023... 构建时间序列分析求和自回归移动平均(ARIMA)乘积季节模型,模拟并预测北京市非职业性一氧化碳(CO)中毒事件的发生趋势。采用SPSS 21.0软件对2012年1月—2022年9月北京市发生的非职业性CO中毒事件进行ARIMA模型拟合,预测2022年10月—2023年9月各月份发生CO中毒事件的次数,并采用2022年10月—2023年8月实际发生数进行验证。结果显示,构建的ARIMA(3,1,3)(2,1,1)12模型平稳R^(2)=0.39,决定系数R2=0.54,均方根误差(RMSE)3.06,均值绝对百分比误差(MAPE)84.78,平均绝对误差(MAE)2.23,贝叶斯信息准则(BIC)值2.73;杨-博克斯(Ljung-Box)统计量Q=7.58,P=0.58,残差序列为白噪声序列。总体而言,模型拟合适度较好。2022年10月—2023年8月各月份CO中毒发生次数实际值均在预测值95%置信区间,表现出较好的预测效果。拟合ARIMA(3,1,3)(2,1,1)12模型能很好地预测北京市非职业性CO中毒事件的发生,可用于中毒事件的监测预警工作。 展开更多
关键词 非职业性一氧化碳(CO)中毒 时间序列分析 求和自回归移动平均(arima)乘积季节模型 预测
原文传递
基于小波分解和ARIMA-GARCH-GRU组合模型的制造业PMI预测
11
作者 陆文星 任环宇 +1 位作者 梁昌勇 李克卿 《工业工程》 2024年第1期86-95,127,共11页
制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过... 制造业采购经理人指数(PMI)是反映国家经济运行情况的重要指标,而传统预测模型对该类时序数据预测精度不高。针对制造业PMI指数的非线性、波动性和数据量少的特点,提出一种基于一维离散小波变换进行数据预处理的组合模型。时序数据经过小波变换,由整合移动平均自回归–广义自回归条件异方差模型(ARIMA-GARCH)处理稳态低频数据,门控循环单元(GRU)处理波动性强的高频数据,将各频段预测结果进行融合得到最终预测结果。为验证模型有效性,选取一定数据量的PMI指数进行实验。结果表明,与其他常见模型对比,本文构建的组合模型具有较好的预测精度与性能,平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对百分比误差(MAPE)分别达到0.00329、0.004162、0.65%。 展开更多
关键词 采购经理人指数(PMI) 小波分解 整合移动平均自回归模型(arima) 广义的自回归条件异方差模型(GARCH) 门控循环单元(GRU)
下载PDF
基于自回归求和滑动平均模型的风力发电机轴承寿命预测 被引量:9
12
作者 董海鹰 王瑞军 顾瑶琴 《系统仿真技术》 2017年第3期185-189,208,共6页
提出了基于自回归求和滑动平均(ARIMA)模型的风力发电机轴承寿命预测方法。以经小波包去噪、平稳化处理后轴承振动信号的均方根值为特征量,利用贝叶斯信息准则确定ARIMA模型的自相关阶数和滑动平均阶数,并用矩估计方法求出ARIMA模型的... 提出了基于自回归求和滑动平均(ARIMA)模型的风力发电机轴承寿命预测方法。以经小波包去噪、平稳化处理后轴承振动信号的均方根值为特征量,利用贝叶斯信息准则确定ARIMA模型的自相关阶数和滑动平均阶数,并用矩估计方法求出ARIMA模型的参数。利用求得的ARIMA模型得出振动信号均方根值的变化趋势,进而预测出风力发电机轴承的寿命。仿真结果表明,基于ARIMA模型的风力发电机轴承寿命预测方法能够有效地利用实时数据对轴承寿命进行预测,为风力发电机组的设计和维护提供理论依据。 展开更多
关键词 风力发电机 自回归求和滑动平均(arima)模型 轴承寿命预测
下载PDF
浙江省月度电力需求的变分模态分解-自适应模糊神经网络-差分整合移动平均自回归组合预测模型及应用 被引量:5
13
作者 董知周 黄建平 +6 位作者 许晓敏 李铮 纪正森 高恬 吴庚奇 夏洪涛 陈浩 《科学技术与工程》 北大核心 2021年第12期4957-4967,共11页
为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过... 为提高电力需求预测的精度,提出了一种将变分模态分解(variational mode decomposition,VMD)和自适应模糊神经网络(adaptive network-based fuzzy inference system,ANFIS)相结合的方法并应用到月度电力需求预测中。首先将原始数据通过VMD分解成有限带宽的子模态序列,选用差分整合移动平均自回归模型(autoregressive integrated moving average model,ARIMA)、ANFIS、经验模态分解(empirical mode decomposition,EMD)与ANFIS相结合和VMD-ANFIS几种模型进行预测结果对比。结果表明:相比直接利用ANFIS模型得到的预测结果,增加VMD分解过程能有效减小预测误差。说明所应用的VMD-ANFIS方法更具优越性,可以获得更好的预测结果。 展开更多
关键词 电力需求预测 差分整合移动平均自回归模型(arima) 变分模态分解 自适应模糊神经网络
下载PDF
基于SSA-Hurst-ARIMA组合模型的船舶柴油发电机组故障特征短期预测
14
作者 梁清政 王浩 +2 位作者 程垠钟 杨天诣 姚钦博 《现代制造技术与装备》 2024年第2期51-54,共4页
为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行... 为提高船舶柴油发电机组故障特征短期预测精度,建立基于奇异谱分析(Singular Spectrum Analysis,SSA)、Hurst指数、自回归移动平均(Auto-Regressive Integrated Moving Average,ARIMA)的组合预测模型。以某试验中船舶柴油发电机组运行数据为基础,选取增压器滑油压强数据,对比分析单一ARIMA模型、SSA主成分-ARIMA组合模型和SSA-Hurst-ARIMA组合模型的预测效果。结果表明,SSA-Hurst-ARIMA组合模型的预测效果优于单一ARIMA模型和SSA主成分-ARIMA组合模型,更适合应用于船舶柴油发电机组故障特征的短期预测。 展开更多
关键词 船舶柴油发电机组 故障特征 短期预测 奇异谱分析(SSA) HURST指数 自回归移动平均(arima)模型
下载PDF
求和自回归移动平均模型在通辽市成蚊密度预测中的应用 被引量:1
15
作者 邵华 布仁巴图 +4 位作者 秦忠良 商娜 倪晓娜 张志平 李莹盈 《实用预防医学》 CAS 2023年第2期242-245,共4页
目的 分析通辽市不同年份成蚊密度,通过拟合求和自回归移动平均模型(autoregressive integrated moving average, ARIMA)对未来蚊虫密度进行预测。方法 选用诱蚊灯法监测通辽市2017—2021年不同生境成蚊密度,根据监测结果,建立ARIMA模型... 目的 分析通辽市不同年份成蚊密度,通过拟合求和自回归移动平均模型(autoregressive integrated moving average, ARIMA)对未来蚊虫密度进行预测。方法 选用诱蚊灯法监测通辽市2017—2021年不同生境成蚊密度,根据监测结果,建立ARIMA模型,对2022年成蚊密度进行预测。结果 2017—2021年通辽市各监测点平均蚊密度为7.91只/(灯·夜)。其中淡色库蚊为优势蚊种。在五类生境中,除2017年农户蚊密度较高外,其他年份都是牲畜棚密度较高。每年成蚊密度均为单峰曲线,除2017年高峰出现在7月份外,其余年份高峰均出现在8月,根据2017—2021年蚊虫密度结果,拟合ARIMA(1,1,1)×(1,1,0)_(12)模型,残差序列为白噪声序列(Q=14.498,P=0.488),用此模型预测2022年的成蚊密度,5—10月份分别为8.12、7.48、13.79、29.31、22.08和12.37只/(灯·夜)。结论 利用2017—2021年的数据建立ARIMA模型,能够预测2022年的成蚊密度和季节消长趋势,为进一步蚊媒传染病风险评估提供理论数据支持。 展开更多
关键词 蚊密度 预测 求和自回归移动平均模型
原文传递
应用ARIMA乘积季节模型对耐碳青霉烯类肺炎克雷伯菌流行趋势预测效果研究 被引量:1
16
作者 张绮萍 季聪华 +1 位作者 陆锦琪 王霄腾 《中国医院统计》 2023年第3期173-178,共6页
目的研究自回归求和移动平均(ARIMA)乘积季节模型在耐碳青霉烯类肺炎克雷伯菌(CRKP)流行趋势预测中的应用价值,为掌握医院CRKP流行趋势及制定防控对策提供参考。方法基于2016—2021年嘉兴市某三级甲等综合性医院CRKP月检出株数,应用SPSS... 目的研究自回归求和移动平均(ARIMA)乘积季节模型在耐碳青霉烯类肺炎克雷伯菌(CRKP)流行趋势预测中的应用价值,为掌握医院CRKP流行趋势及制定防控对策提供参考。方法基于2016—2021年嘉兴市某三级甲等综合性医院CRKP月检出株数,应用SPSS 26.0软件构建ARIMA乘积季节模型,以2022年实际CRKP月检出株数作为评估模型的样本与预测值进行比较,评价模型的预测效果。结果2016—2021年该院CRKP检出总数呈下降趋势,发病集中在每年的7—9月,9月为发病高峰,具有周期性和季节性。拟合的ARIMA(0,1,2)(0,1,0)12模型贝叶斯信息准则(BIC)为0.43,平均绝对百分误差(MAPE)为16.54,模型残差序列的Ljung-Box检验差异无统计学意义(Q=11.06,P=0.81),残差序列为白噪声,说明该模型拟合良好,确定为最优模型。2022年1—12月CRKP月检出株数用以验证模型的预测效果,结果显示实际发病趋势与预测曲线图较为吻合,实际值均位于预测值的95%置信区间内,预测误差-33.33%~25.00%,平均相对误差15.56%,说明模型的预测效果较好。结论ARIMA乘积季节模型能较好地拟合该院CRKP检出株数的时间变化,可用于CRKP流行趋势的短期预测和动态分析,为医院CRKP感染的早期预警和防控提供理论依据。 展开更多
关键词 自回归求和移动平均模型 乘积季节模型 耐碳青霉烯类肺炎克雷伯菌 预测
下载PDF
基于SARIMA时间序列模型的台风频次预测 被引量:1
17
作者 王依 黄培煌 《计算机科学与应用》 2023年第12期2464-2473,共10页
台风是一种破坏力极大的灾害性天气,因此预测和预报台风,历来是气象工作的一项重要任务。对台风进行精准预测,并制定相应的预防和应急措施,是减轻台风造成灾难的重要手段。本文基于季节性差分自回归滑动平均模型(Seasonal Autoregressiv... 台风是一种破坏力极大的灾害性天气,因此预测和预报台风,历来是气象工作的一项重要任务。对台风进行精准预测,并制定相应的预防和应急措施,是减轻台风造成灾难的重要手段。本文基于季节性差分自回归滑动平均模型(Seasonal Autoregressive Integrated Moving Average, SARIMA)研究台风频次的预测方法。该模型通过考虑时间序列的季节性和趋势性变化研究台风频次,旨在对未来台风频次提供准确预测方法。通过预处理台风发生频次相关数据,对时间序列进行平稳性检验以及白噪声测试,采用AIC遍历对模型定阶,计算模型的均方根误差(RMSE)和平均绝对误差(MAE)并绘制模型的残差分布和自相关图,分析比较后认为该模型的拟合效果较好。最后对2024年1月至2024年12月的台风频次进行预测,为提高自然灾害应对和相关政策制定提供了有力支持。 展开更多
关键词 Sarima模型 台风频次 季节性影响 求和自回归移动平均模型
下载PDF
基于ARIMA和LSTM的上证指数预测与分析
18
作者 孙晨皓 王林 《信息与电脑》 2023年第2期29-31,共3页
近年来,股票已成为很多普通人的投资对象。而上证指数作为股市风向标,对于宏观经济和整个股票市场具有十分重要的作用。用机器学习的方法研究上证指数,有助于了解股市变动,掌握上证多数个股的走势,给决策及投资者提供一些建议。基于此,... 近年来,股票已成为很多普通人的投资对象。而上证指数作为股市风向标,对于宏观经济和整个股票市场具有十分重要的作用。用机器学习的方法研究上证指数,有助于了解股市变动,掌握上证多数个股的走势,给决策及投资者提供一些建议。基于此,以上证每日指数为研究对象,对2000-2022年的数据进行研究,采用差分自回归移动平均模型(Autoregressive Integrated Moving Average,ARIMA)与长短期记忆(Long Short Term Memory,LSTM)模型拟合上证指数收盘价,然后对预测结果进行分析并做出评价。 展开更多
关键词 上证指数 股票预测 差分自回归移动平均模型(arima) 长短期记忆(LSTM)
下载PDF
基于GRU和ARIMA混合模型的IGBT失效预测
19
作者 冯鹏程 《信息与电脑》 2023年第16期64-66,共3页
针对现有绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)失效特征预测误差较大的问题,构建一种基于门控循环单元(Gated Recurrent Units,GRU)和自回归整合移动平均模型(Autoregressive Integrated Moving Average model,A... 针对现有绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)失效特征预测误差较大的问题,构建一种基于门控循环单元(Gated Recurrent Units,GRU)和自回归整合移动平均模型(Autoregressive Integrated Moving Average model,ARIMA)的门控自回归混合失效预测模型。混合预测模型利用全连接层连接门控循环单元和自回归整合移动平均模型构建成。实验结果表明,门控自回归混合失效预测模型在均方误差、平均绝对误差和最大相对误差上的误差对比现存方法平均减少约12.94%。 展开更多
关键词 门控循环单元(GRU) 自回归整合移动平均模型(arima) 绝缘栅双极型晶体管(IGBT) 失效预测
下载PDF
ARIMA乘积季节模型在上海市甲肝发病预测中的应用 被引量:29
20
作者 朱奕奕 冯玮 +1 位作者 赵琦 徐飚 《复旦学报(医学版)》 CAS CSCD 北大核心 2012年第5期460-464,共5页
目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最... 目的应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析季节性时间序列,建立上海市病毒性甲型肝炎发病率的预测模型。方法利用上海市1990年至2011年甲肝按月发病数的历史疫情数据,采用非条件最小二乘法估计模型参数,模型阶数确定后,建立甲肝按月发病数ARIMA乘积季节预测模型。结果非季节和季节移动平均的参数分别是0.6341和0.9999,季节自回归的参数是0.4059,t检验的P值均<0.0001,方差估计值是0.1593,AIC=282.1478,SBC=292.7242,对建立的模型进行残差的白噪声检验,χ2检验统计量的P值均>0.05,据此建立ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型,模型表达式(1-0.405 9B12)(1-B)(1-B12)Yt=(1-0.634 1B)(1-0.999 9B12)εt,并开展上海市甲肝发病数的预测。结论 ARIMA(0,1,1)(1,1,1)12NOINT乘积季节模型可用于预测上海市病毒性甲型肝炎发病的季节模型。 展开更多
关键词 自回归求和移动平均(arima)乘积季节模型 时间序列 甲肝
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部