随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方...随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。展开更多
随着低压台区线路改造升级,台区户变关系以及用户相位信息变动频繁。为解决因排查效率低、更新不及时等造成的户变相位档案错误问题,提出了一种基于电压特征提取和聚类算法的户变关系及相位识别方法。首先采用自适应分段聚合近似(adapti...随着低压台区线路改造升级,台区户变关系以及用户相位信息变动频繁。为解决因排查效率低、更新不及时等造成的户变相位档案错误问题,提出了一种基于电压特征提取和聚类算法的户变关系及相位识别方法。首先采用自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)方法提取电压曲线特征,然后采用改进DBSCAN(density-based spatial clustering of application with noise)算法识别户变关系不匹配的用户,以及对户变关系正常用户进行相位识别,该改进方法通过自适应确定DBSCAN算法的参数和检验聚类结果中噪声用户的相关性,提高了算法聚类结果的准确度。实际台区算例分析验证了所提方法的准确性。展开更多
文摘随着低压配电网的改造升级,台区户变关系变化频繁,为解决时有发生的用户台区挂错现象,提出一种利用改进的基于密度的点排序识别聚类结构(ordering points to identify the clustering structure,OPTICS)的台区户变关系识别和相别识别方法。首先,对配网电压序列的相关性进行定性分析,提出利用电压时序序列作为分析识别的数据基础;其次,采用改进的自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)对电压序列进行降维处理,提取能够反映电压特征的低维向量;然后利用改进的OPTICS算法对所提取的特征向量进行聚类分析,识别台区的户变关系和相别关系;最后,基于实际的台区数据进行算例分析,验证了所提方法的准确性。
文摘随着低压台区线路改造升级,台区户变关系以及用户相位信息变动频繁。为解决因排查效率低、更新不及时等造成的户变相位档案错误问题,提出了一种基于电压特征提取和聚类算法的户变关系及相位识别方法。首先采用自适应分段聚合近似(adaptive piecewise aggregate approximation,APAA)方法提取电压曲线特征,然后采用改进DBSCAN(density-based spatial clustering of application with noise)算法识别户变关系不匹配的用户,以及对户变关系正常用户进行相位识别,该改进方法通过自适应确定DBSCAN算法的参数和检验聚类结果中噪声用户的相关性,提高了算法聚类结果的准确度。实际台区算例分析验证了所提方法的准确性。