期刊文献+
共找到805篇文章
< 1 2 41 >
每页显示 20 50 100
基于自适应噪声完备经验模态分解−样本熵−长短期记忆神经网络和核密度估计的短期电力负荷区间预测 被引量:19
1
作者 赵会茹 张士营 +2 位作者 赵一航 刘红雨 邱宝红 《现代电力》 北大核心 2021年第2期138-146,共9页
短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自... 短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自适应噪声完备经验模态分解方法将负荷序列分解为多个模态分量,并根据不同序列样本熵的计算结果将序列进行重构以降低运算量。在此基础上,针对每一个分量分别构建长短期记忆神经网络预测模型,得到未来负荷点预测值。基于此利用核密度估计方法对预测误差的分布进行估计,进而结合点预测结果实现未来短期负荷的区间预测。通过将此模型与其他模型进行对比,结果表明此模型能够实现更低的点预测误差,同时在区间预测中也表现出更好的综合性能。 展开更多
关键词 短期负荷预测 自适应噪声完备经验模态分解 长短期记忆神经网络 核密度估计
下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:14
2
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
下载PDF
结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究
3
作者 尹逊哲 岳东杰 +2 位作者 翟长治 陈雨田 程晓云 《甘肃科学学报》 2024年第1期117-124,共8页
电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集... 电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。实验结果表明,与传统的LSTM模型相比,混合模型预测精度明显提高。在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。 展开更多
关键词 电离层 电离层闪烁预报 自适应噪声完备集合经验模态分解 变分模态分解 深度学习
下载PDF
一种添加部分自适应噪声的集成经验模态分解方法
4
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
基于完全自适应噪声集合经验模态分解的短时交通流组合预测
5
作者 熊浩 张丽 郝椿淋 《物流科技》 2024年第19期97-103,共7页
为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,... 为了提高短时交通流预测的准确性,鉴于短时交通流非平稳、难预测的特征,提出了基于完全自适应噪声集合经验模态分解(CEEMDAN)短时交通流组合预测方法。利用CEEMDAN将原始短时交通流信号进行分解得多个复杂度、频率不同的时间序列分量,利用排列熵算法(PE算法)计算各分量的复杂度;然后根据复杂度和随机性的不同分为高频和低频,分别使用ATT-TCN-BIGRU模型和ARIMA模型对高频分量和低频分量进行预测,最后叠加高频和低频的每个分量预测结果作为最终短时交通流预测值。仿真分析结果表明:与ARIMA模型、TCN模型、BIGRU模型、ATT-TCN-BIGRU模型相比,此模型的平均绝对误差及平均绝对百分比误差为最小,预测精度更高。 展开更多
关键词 短时交通流预测 完全自适应噪声集合经验模态分解 排列熵 组合预测
下载PDF
基于完全自适应噪声集合经验模态分解和互相关分析的核电厂信号降噪研究
6
作者 刘琳琳 王振宇 +1 位作者 李露 陈嘉翊 《核科学与工程》 CAS CSCD 北大核心 2024年第1期80-90,共11页
针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分... 针对在强噪声背景中提取核电厂信号有效成分的问题,本文提出一种将完全自适应噪声集合经验模态分解与互相关分析法相结合的降噪方法并进行验证。该方法的主要步骤如下。首先,通过完全自适应噪声集合经验模态分解法对电站信号进行有效分解,得到全部的本征模态分量。然后,根据互相关系数将上述分量进行筛选,得到有用信号主导的分量,将其叠加、重构成降噪后信号。最后,使用降噪指标对降噪效果进行评价。结果表明:与基于经验模态分解、集合经验模态分解的降噪方法相比,本文所提方法得到的降噪后信号信噪比更高、均方根误差更小、相关系数更大、平滑度更好,具有更优的降噪效果。 展开更多
关键词 信号降噪 经验模态分解 集合经验模态分解 完全自适应噪声集合经验模态分解 互相关分析
下载PDF
深海环境下利用噪声抵消器和经验模态分解的拖船干扰抑制方法
7
作者 周健 宋雪晶 +1 位作者 刘福臣 张伟 《兵工学报》 EI CAS CSCD 北大核心 2024年第2期443-453,共11页
针对深海环境下拖船自噪声在靠近端射和非端射方向产生的多途角扩展干扰影响拖曳声纳探测性能的问题,提出一种利用归一化最小均方误差(Normalized Least Mean Square,NLMS)噪声抵消器和经验模态分解(Empirical Mode Decomposition,EMD)... 针对深海环境下拖船自噪声在靠近端射和非端射方向产生的多途角扩展干扰影响拖曳声纳探测性能的问题,提出一种利用归一化最小均方误差(Normalized Least Mean Square,NLMS)噪声抵消器和经验模态分解(Empirical Mode Decomposition,EMD)的拖船干扰抑制方法。通过借鉴逆波束形成(Inverse Beamforming,IBF)的思想,对靠近端射方向的干扰波束进行相位补偿,重构出时域干扰信号,并将其作为自适应噪声抵消器的输入信号,基阵接收信号作为期望信号,利用NLMS方法调整滤波器的权值,进行初步干扰抑制。在此基础上通过EMD对噪声抵消器的输出结果进行分解得到多个本征模态(Intrinsic Mode Function,IMF)和残余分量,再利用匹配滤波方法筛选出用于重构拖船噪声的IMF,并在阵元域抵消完成干扰抑制,其中匹配模版为靠近端射方向频域干扰波束逆傅里叶变换得到的时域干扰信号。仿真数据和海试数据分析结果表明,与其他方法相比,所提方法能够大幅度抑制拖船自噪声产生的多途角扩展干扰,提升拖曳声纳在干扰盲区内对弱目标信号的检测能力。 展开更多
关键词 拖船噪声 噪声抵消器 经验模态分解 检测能力 干扰抑制
下载PDF
融合自适应滑动集合经验模态分解的机器学习月径流预测方法
8
作者 胡永旭 乔长录 +1 位作者 刘延雪 李旭 《水电能源科学》 北大核心 2024年第10期6-10,共5页
为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)... 为提高月径流预测精度,解决传统分解集成径流预测方法提前引入“未来信息”在实际工程中无法实现的问题,提出了一种基于自适应滑动集合经验模态分解(ASEEMD)、秃鹰搜索(BES)算法和极限学习机(ELM)耦合的月径流预测模型(ASEEMD-BES-ELM)。并以玛纳斯河1957~2014年的月径流序列为例,首先,利用ASEEMD对原始月径流序列自适应分解,得到若干子序列;其次,将各子序列分别输入到结合BES算法和网格搜索优化后的ELM模型中预测;最后,累加各子序列预测结果,得到最终月径流预测值。与ELM^(*)、BES-LEM^(*)、BES-ELM、EEMD-BES-ELM(传统“捆绑分解”)模型对比结果表明,ASEEMD-BES-ELM模型的纳什效率系数为0.971、平均绝对误差为5.173m^(3)/s、均方根误差为8.282m^(3)/s、平均绝对百分比误差为16.033%,在符合实际应用中预测精度最高。结果可为干旱区月径流预测研究提供参考。 展开更多
关键词 月径流预测 自适应分解 集合经验模态分解 秃鹰搜索算法 极限学习机 玛纳斯河
下载PDF
基于经验模态分解的船舶辐射噪声特征提取研究
9
作者 崔建忠 姜淼 《舰船科学技术》 北大核心 2024年第18期150-153,共4页
船舶辐射噪声中的线谱分量具有较高的强度和稳定度,通过测定并跟踪线谱,可以精确地估计目标的运动参数。为此,研究基于经验模态分解的船舶辐射噪声特征提取方法。首先,构建船舶辐射噪声数学模型,用于获取船舶辐射噪声信号;然后,运用经... 船舶辐射噪声中的线谱分量具有较高的强度和稳定度,通过测定并跟踪线谱,可以精确地估计目标的运动参数。为此,研究基于经验模态分解的船舶辐射噪声特征提取方法。首先,构建船舶辐射噪声数学模型,用于获取船舶辐射噪声信号;然后,运用经验模态分解方法提取船舶辐射噪声的7个经验模态分量和1个余项,并计算船舶辐射噪声经验模态分量的样本熵;最后,选择样本熵最大的船舶辐射噪声检验模态分量作为船舶辐射噪声的特征。实验结果表明,该方法可以准确获得船舶运行设备的辐射噪声,且具备较强的舰船辐射噪声分帧能力。该方法还可以有效地将舰船辐射噪声分解成不同经验模态分量,大大降低了船舶辐射噪声余项接近零。 展开更多
关键词 经验模态分解 船舶辐射噪声 特征提取 样本熵
下载PDF
基于运行振动噪声集成经验模态分解的变压器缺陷辨识方法
10
作者 白晨 《电气技术与经济》 2024年第11期175-177,共3页
变压器缺陷辨识是变压器故障诊断的一种手段,辨识结果可以为变压器检修提供参考依据,但目前在实际中缺陷辨识方面存在缺陷和不足,不仅交并比比较低,而且mAP值也比较低,无法达到预期的辨识效果,为此提出基于运行振动噪声集成经验模态分... 变压器缺陷辨识是变压器故障诊断的一种手段,辨识结果可以为变压器检修提供参考依据,但目前在实际中缺陷辨识方面存在缺陷和不足,不仅交并比比较低,而且mAP值也比较低,无法达到预期的辨识效果,为此提出基于运行振动噪声集成经验模态分解的变压器缺陷辨识方法。采用无线传感器感知变压器运行信号,并对其清洗处理,通过对原始信号运行振动噪声集成经验模态分解,提取变压器缺陷特征,利用削度表征变压器缺席冲击强度,辨识变压器缺陷,实现基于运行振动噪声集成经验模态分解的变压器缺陷辨识。经实验证明,设计方法交并比在0.95以上,mAP值在0.97以上,可以实现对变压器缺陷的精准辨识。 展开更多
关键词 运行振动噪声 经验模态分解 变压器 缺陷 无线传感器 削度
下载PDF
基于自适应噪声完全集合经验模态分解算法和Hurst指数的地震数据去噪方法 被引量:3
11
作者 毛世榕 史水平 +5 位作者 玉壮基 苏梅艳 李莎 何嘉 幸符 衡张清 《地震学报》 CSCD 北大核心 2023年第2期258-270,共13页
在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经... 在地震观测中,地震数据中普遍包含有噪声信号。由于噪声信号的干扰,地震分析的效率会受到不同程度的影响。传统的去噪方法通常需要噪声的先验知识,并且滤波时会造成部分有效信号丢失。针对这一问题,本文提出一种将自适应噪声完全集合经验模态分解(CEEMDAN)算法与Hurst指数相结合的地震数据去噪方法。首先通过CEEMDAN方法将信号分解为一系列本征模函数(IMF),然后利用Hurst指数对滤波后的IMF分量进行识别,最后对地震数据IMF分量进行重构,从而实现数据去噪。与传统方法的去噪效果对比表明,本文方法可将低信噪比波形的去噪效果提高32%,将高信噪比波形的去噪效果提高6倍。同时对地磁数据的去噪结果表明,本文方法能够较完整地将地铁噪声从地磁信号波形中滤除。 展开更多
关键词 地震数据去噪 地磁数据去噪 自适应噪声完全集合经验模态分解 HURST指数
下载PDF
自适应噪声完备经验模态分解排列熵结合支持向量机的心音分类方法研究 被引量:6
12
作者 刘美君 吴全玉 +2 位作者 丁胜 潘玲佼 刘晓杰 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2022年第2期311-319,共9页
针对心音信号非平稳性、非线性的特征,为了更直观地把心音信号的特征显示出来,提高分类识别的高效性,提出了一种自适应噪声完备经验模态分解(CEEMDAN)排列熵作为心音信号的特征向量,通过支持向量机(SVM)进行心音分类识别的方法。首先,... 针对心音信号非平稳性、非线性的特征,为了更直观地把心音信号的特征显示出来,提高分类识别的高效性,提出了一种自适应噪声完备经验模态分解(CEEMDAN)排列熵作为心音信号的特征向量,通过支持向量机(SVM)进行心音分类识别的方法。首先,将原始心音信号进行CEEMDAN,得到若干从高频到低频的模态分量(IMF)。其次,利用IMF分量与原始信号的相关系数、能量因子和信噪比来优选IMF做Hilbert变换,得到分量信号的瞬时频率,再计算各IMF排列熵值组成特征向量。最后,将特征向量输入SVM二分类器进行正常与异常心音信号的分类识别。对源自2016年PhysioNet/CinC挑战赛的100例心音样本进行正常与异常的分类,准确度达到87%。研究表明本文方法相比于常用的EMD和EEMD排列熵的方法准确度提高了18%~24%,可见,CEEMDAN排列熵结合SVM的方法能够有效识别正常和异常心音。 展开更多
关键词 心音分类 自适应噪声完备经验模态分解 排列熵 支持向量机
原文传递
基于自适应投影多元经验模态分解的电力系统强迫振荡源定位 被引量:5
13
作者 姜涛 刘博涵 +1 位作者 李雪 李国庆 《电工技术学报》 EI CSCD 北大核心 2023年第13期3527-3538,共12页
近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振... 近年来,电力系统强迫振荡在电网中频繁发生,严重威胁到电网的安全稳定运行,快速、准确地定位强迫振荡源对抑制强迫振荡具有重要意义,但现有方法在分解具有高差异度多通道广域量测信息时难以准确提取强迫振荡模式分量,严重影响到强迫振荡源定位精度。为此,该文提出一种基于自适应投影多元经验模态分解(APIT-MEMD)的强迫振荡源定位方法。该方法首先采用APIT-MEMD通过构建自适应投影方向向量,实现对发电机多通道广域量测信息的同步分解,分离出表征不同振荡模式的固有模态函数(IMF)分量;然后,借助对数能量熵从众多IMF分量中提取出含强迫振荡模式的IMF分量;在此基础上,根据提取出的强迫振荡IMF分量,计算各发电机的耗散能量流,根据耗散能量流实现强迫振荡源定位;最后,通过WECC 179节点测试系统仿真数据和实际电网同步相量测量装置(PMU)实测数据对所提方法进行分析、验证,结果验证了所提方法的准确性和实用性。 展开更多
关键词 电力系统 强迫振荡 振荡源定位 自适应投影多元经验模态分解 固有模态函数 耗散能量流
下载PDF
基于完备集合经验模态分解的含抽蓄微电网混合储能容量优化配置 被引量:3
14
作者 魏震波 姚怡欣 +3 位作者 张雯雯 罗紫航 李银江 任语杰 《储能科学与技术》 CAS CSCD 北大核心 2023年第11期3414-3424,共11页
为减缓微电网并网联络线功率波动,拓展混合储能参与系统调节的能力边界,提出一种含抽蓄的微电网混合储能系统结构及基于完备集合经验模态分解(complete ensemble empirical mode decomposition,CEEMDAN)的容量优化配置方法。首先,考虑... 为减缓微电网并网联络线功率波动,拓展混合储能参与系统调节的能力边界,提出一种含抽蓄的微电网混合储能系统结构及基于完备集合经验模态分解(complete ensemble empirical mode decomposition,CEEMDAN)的容量优化配置方法。首先,考虑抽水蓄能、蓄电池的能量型储能特性与超级电容器的功率型储能特性,在微电网中搭建混合储能系统结构模型;其次,根据负荷出力确定联络线协议功率及混合储能总功率,并采用完备集合经验模态分解法对混储系统总功率进行分解;最后,建立以储能年综合成本最小为优化目标的混合储能系统容量优化配置模型,并给出相应求解方法。算例结果表明:较不含抽蓄的混储系统,该结构模型的调控能力得到提升,在有效平抑联络线功率波动的同时提高系统经济性,且蓄电池设备动作频次有所减少,提升了其使用寿命,验证了所提混合储能结构的合理性及优化模型的有效性。 展开更多
关键词 微电网 混合储能系统 完备集合经验模态分解 容量配置 抽水蓄能
下载PDF
基于经验模态分解的汽车发动机进/排气管道低噪声抑制法
15
作者 常红梅 孟欣 +1 位作者 韩晋 叶伟 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第10期287-292,共6页
为降低汽车发动机进/排气管道内的噪声,提高发动机的稳定性和使用寿命,提出基于经验模态分解的汽车发动机进/排气管道低噪声经验模态分解抑制法。分别计算了发动机排气基频噪声与多气缸进气噪声,得到了发动机进/排气的共振噪声。基于经... 为降低汽车发动机进/排气管道内的噪声,提高发动机的稳定性和使用寿命,提出基于经验模态分解的汽车发动机进/排气管道低噪声经验模态分解抑制法。分别计算了发动机排气基频噪声与多气缸进气噪声,得到了发动机进/排气的共振噪声。基于经验模态分解算法构造了发动机的噪声分量,通过计算其极大值与极小值的包络平均值,得到每一个噪声点相对于极值点的残余量,并将发动机的噪声信号分解为不同的单元分量。在噪声收敛系数以及噪声模态分解机制下,设计了发动机进排低噪声抑制算法。实验结果表明:该算法对噪声的抑制具有一定的效果;消声器数量越多,噪声的传递损失越大;在消声器的消声容积中,传递损失分别与扩张比和扩张式结构长度成正比;管道直径大于36 mm且管道长度为150 mm时,噪声抑制效果最好,而在发动机全功率运行时,需要保证管道直径小于32 mm且长度为150 mm。 展开更多
关键词 经验模态分解 发动机 进/排气 噪声抑制 传递损失 包络平均值
下载PDF
变转速工况下松动故障自适应时频模态分解
16
作者 单振 汤佳琛 +3 位作者 王重秋 杨建华 郝晨航 李尚袁 《工程科学学报》 EI 北大核心 2025年第1期130-141,共12页
松动故障广泛存在于机械设备之中,而在变转速工况下的松动故障诊断仍存在一定挑战.为实现变转速工况下的松动故障诊断,本文提出了一种自适应时频模态分解方法.为提高该方法的多工况自适应能力,针对时频模态分解窗宽参数进行了优化选取,... 松动故障广泛存在于机械设备之中,而在变转速工况下的松动故障诊断仍存在一定挑战.为实现变转速工况下的松动故障诊断,本文提出了一种自适应时频模态分解方法.为提高该方法的多工况自适应能力,针对时频模态分解窗宽参数进行了优化选取,研究了窗宽参数与分解输出的非线性关联特征,实现了不同噪声下的自适应时频模态分解.为验证该方法的有效性,针对支承松动故障进行了实验验证,同时在某工程设备上进行了旋转部件松动故障实验验证.采用自适应时频模态分解算法对实验验证数据进行处理,实现了非平稳特征的模态分解.通过定义和计算各阶次能量占比,完成了振动信号的故障特征分析,实现了松动故障的特征提取与诊断.结果表明,所提方法能够实现非平稳信号的模态分解,对于松动故障具备有效的诊断能力. 展开更多
关键词 变转速工况 模态分解 松动故障 噪声 自适应
下载PDF
基于序关系分析法和自适应噪声完备集合经验模态分解法的直升机飞行培训安全风险评估指标权重分析 被引量:7
17
作者 许铭赫 高扬 《科学技术与工程》 北大核心 2021年第14期6089-6096,共8页
为有效管控直升机飞行培训的安全风险,依据“人-机-环-管”(man-machine-environment-management,MMEM)理论构建直升机飞行培训安全风险评估指标体系,并提出基于序关系分析法(order relation analysis method,G1)和自适应噪声完备集合... 为有效管控直升机飞行培训的安全风险,依据“人-机-环-管”(man-machine-environment-management,MMEM)理论构建直升机飞行培训安全风险评估指标体系,并提出基于序关系分析法(order relation analysis method,G1)和自适应噪声完备集合经验模态分解法(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)的权重确定方法。利用G1确定指标的主观权重,利用CEEMDAN确定指标的客观权重,然后利用最小相对信息熵原理最终确定直升机飞行培训安全风险评估指标的组合权重。以典型直升机飞行培训机构为例进行分析。结果表明不良天气对系统安全的影响最大,同时验证了该方法的简便实用,可以有效帮助机构有针对性地实施安全风险控制和管理。 展开更多
关键词 直升机飞行培训 安全风险 序关系分析法(G1) 自适应噪声完备集合经验模态分解法(CEEMDAN) 指标权重
下载PDF
基于集合经验模态分解的增强核岭回归配电系统状态估计
18
作者 张玉敏 张涌琛 +4 位作者 叶平峰 吉兴全 石春友 蔡富东 李一宸 《中国电力》 CSCD 北大核心 2024年第9期156-168,共13页
针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对... 针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。 展开更多
关键词 配电系统 状态估计 核岭回归 非高斯噪声 集合经验模态分解
下载PDF
基于完备集合经验模态分解的SE-BiGRU超短期风速预测 被引量:2
19
作者 金子皓 向玲 +1 位作者 李林春 胡爱军 《电力科学与工程》 2023年第1期9-16,共8页
考虑风力发电具有随机性和不稳定性,为准确预测风速,提出一种基于完备集合经验模态分解和双向门控单元网络相结合的短期风速组合预测方法。首先,采用完备集合经验模态分解,将原始风速序列分解为若干个具有较强规律性的子序列,以减少不... 考虑风力发电具有随机性和不稳定性,为准确预测风速,提出一种基于完备集合经验模态分解和双向门控单元网络相结合的短期风速组合预测方法。首先,采用完备集合经验模态分解,将原始风速序列分解为若干个具有较强规律性的子序列,以减少不同特征尺度序列间的相互影响;然后,利用样本熵来评估风速子序列的复杂度,将复杂度相近的子序列组合为一个新序列,以减少输入到神经网络的模型数量;最后,将新组合的子序列分别输入到双向门控单元网络中进行预测,得到各子序列的预测结果,叠加得最终的风速预测结果。实例预测结果表明,所提出的风速预测方法具有较高的精度和运行效率。 展开更多
关键词 风力发电 风速超短期预测 完备集合经验模态分解 样本熵 双向门控单元网络
下载PDF
基于快速自适应经验模态分解的高速经编机振动分析 被引量:1
20
作者 陈志昊 包文杰 +3 位作者 李富才 静波 黄朝林 孙建文 《纺织学报》 EI CAS CSCD 北大核心 2023年第4期204-211,共8页
针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模... 针对某型高速经编机在高转速下结构振动过大以及机构运动信号与结构振动信号相混叠,故障特征难以分离的问题,提出基于快速自适应经验模态分解(FAEMD)算法的经编机振动故障诊断方法。首先运用FAEMD算法将原始振动信号分解成有限个本征模态函数(IMF),然后计算各IMF分量与原信号的相关性,结合经编机运动特点,判断其中相关性最大的本征模态函数为机构运动分量并去除,最后将剩余分量重组实现结构振动信号的提取。将该方法应用于经编机振动故障诊断中,对动态振动数据进行处理,结合静态固有频率测试,成功提取出与实际故障现象相同的信号频率特征,判断出经编机在高转速下振动过大的原因,为后续经编机振动优化提供了参考。 展开更多
关键词 高速经编机 振动分析 自适应经验模态分解 相关性分析 故障诊断
下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部