机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为...机械钻速(rate of penetration,ROP)是钻井作业优化和减少成本的关键因素,钻井时有效地预测ROP是提升钻进效率的关键。由于井下钻进时复杂多变的情况和地层的非均质性,通过传统的ROP方程和回归分析方法来预测钻速受到了一定的限制。为了实现对钻速的高精度预测,对现有BP (back propagation)神经网络进行优化,提出了一种新的神经网络模型,即动态自适应学习率的粒子群优化BP神经网络,利用录井数据建立目标井预测模型来对钻速进行预测。在训练过程中对BP神经网络进行优化,利用启发式算法,即附加动量法和自适应学习率,将两种方法结合起来形成动态自适应学习率的BP改进算法,提高了BP神经网络的训练速度和拟合精度,获得了更好的泛化性能。将BP神经网络与遗传优化算法(genetic algorithm,GA)和粒子群优化算法(particle swarm optimization,PSO)结合,得到优化后的动态自适应学习率BP神经网络。研究利用XX8-1-2井的录井数据进行实验,对比BP神经网络、PSO-BP神经网络、GA-BP神经网络3种不同的改进后神经网络的预测结果。实验结果表明:优化后的PSO-BP神经网络的预测性能最好,具有更高的效率和可靠性,能够有效的利用工程数据,在有一定数据采集量的区域提供较为准确的ROP预测。展开更多
人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集...人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集成子网的两个步骤中,使用Adagrad、RMSProp、Adam、RAdam等自适应学习率方法来改进现有AdaNet中的优化算法。改进后的优化算法能够为不同维度参数提供不同程度的学习率缩放,得到更分散的权重分布,以增加AdaNet产生子网的多样性,从而降低集成学习的泛化误差。实验结果表明,在MNIST(Mixed National Institute of Standards and Technology database)、Fashion-MNIST、带高斯噪声的Fashion-MNIST这三个数据集上,改进后的优化算法能提升AdaNet的搜索速度,而且该方法产生的更加多样性的子网能提升集成模型的性能。在F1值这一评估模型性能的指标上,改进后的方法相较于原方法,在三种数据集上的最大提升幅度分别为0.28%、1.05%和1.10%。展开更多
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.10476006)四川省基础研究发展计划(the Sichuan Province Foundamental Research Plan China under Grant No.05JY029-067-2)
文摘人工神经网络的自适应结构学习(AdaNet)是基于Boosting集成学习的神经结构搜索框架,可通过集成子网创建高质量的模型。现有的AdaNet所产生的子网之间的差异性不显著,因而限制了集成学习中泛化误差的降低。在AdaNet设置子网网络权重和集成子网的两个步骤中,使用Adagrad、RMSProp、Adam、RAdam等自适应学习率方法来改进现有AdaNet中的优化算法。改进后的优化算法能够为不同维度参数提供不同程度的学习率缩放,得到更分散的权重分布,以增加AdaNet产生子网的多样性,从而降低集成学习的泛化误差。实验结果表明,在MNIST(Mixed National Institute of Standards and Technology database)、Fashion-MNIST、带高斯噪声的Fashion-MNIST这三个数据集上,改进后的优化算法能提升AdaNet的搜索速度,而且该方法产生的更加多样性的子网能提升集成模型的性能。在F1值这一评估模型性能的指标上,改进后的方法相较于原方法,在三种数据集上的最大提升幅度分别为0.28%、1.05%和1.10%。