针对传统粒子群算法(particle swarm optimization,PSO)的不足,提出了一种自适应粒子群优化(adaptive particle swarm optimization,APSO)算法,并应用于直流控制器比例–积分控制器(proportional integral,PI)的参数寻优。文中首先介绍...针对传统粒子群算法(particle swarm optimization,PSO)的不足,提出了一种自适应粒子群优化(adaptive particle swarm optimization,APSO)算法,并应用于直流控制器比例–积分控制器(proportional integral,PI)的参数寻优。文中首先介绍了HVDC控制器的系统模型,然后推导出了贵广直流输电工程中的控制器传递函数,并利用APSO算法进行PI参数寻优。寻优过程采取时间乘绝对误差积分(integral of time multipled by the absolute value of error,ITAE)准则计算目标函数值,取对应ITAE目标函数最小的样本为最优PI参数,得到的PI参数可认为是全局最优解。结果表明了APSO算法在PI控制器参数优化中的全局寻优能力和有效性。展开更多
文摘针对传统粒子群算法(particle swarm optimization,PSO)的不足,提出了一种自适应粒子群优化(adaptive particle swarm optimization,APSO)算法,并应用于直流控制器比例–积分控制器(proportional integral,PI)的参数寻优。文中首先介绍了HVDC控制器的系统模型,然后推导出了贵广直流输电工程中的控制器传递函数,并利用APSO算法进行PI参数寻优。寻优过程采取时间乘绝对误差积分(integral of time multipled by the absolute value of error,ITAE)准则计算目标函数值,取对应ITAE目标函数最小的样本为最优PI参数,得到的PI参数可认为是全局最优解。结果表明了APSO算法在PI控制器参数优化中的全局寻优能力和有效性。