针对传统k最近邻(k-nearest neighbor,KNN)算法中需要设定k值的问题,文章提出一种基于信息熵的自适应k值KNN二分类算法(adaptive k-value KNN bisecting classification algorithm based on information entropy,EAKNN)。该算法通过引...针对传统k最近邻(k-nearest neighbor,KNN)算法中需要设定k值的问题,文章提出一种基于信息熵的自适应k值KNN二分类算法(adaptive k-value KNN bisecting classification algorithm based on information entropy,EAKNN)。该算法通过引入样本比例定义信息熵,加强小样本的重要性;通过计算小于预设熵阈值的最小信息熵,得到对应的k值和模型分数;在此基础上,结合提出的精度提升模型计算得到模型精度,不断迭代模型精度,直到模型精度最大化。实验结果表明,该算法提升模型精度明显,分类准确率高。展开更多
为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇...为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。展开更多
在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基...在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基于自适应时序剖分与KNN(A-TS-KNN)的短时交通流量预测算法。①基于动态时间规整(Dynamic Time Warping,DTW)动态剖分单日时序为不同的交通模式;②在不同交通模式,采用互信息法求解每个预测时刻时间延迟的最大阈值,构造不同时间延迟的状态向量,生成交通流量历史数据库;③采用十次十折交叉验证的方法求解每个时刻不同时间延迟与不同K值的正交误差结果分布,提取误差最小的正交结果,得到自适应时间延迟与K值的参数组合;④采用K个最相似的近邻的距离倒数加权值作为预测结果。对比K近邻(K-nearest neighbors,KNN)、支持向量回归(Support vector regression,SVR)、长短期记忆神经网络(Long-short term memory neural network,LSTM)以及门控递归单元神经网络(Gate recurrent unit neural network,GRU)共4种主流预测模型,A-TS-KNN算法预测精度显著提升;将A-TS-KNN算法用于福州市城市路网中其他交叉路口的短时交通流量预测,结果表现出良好的泛化能力。展开更多
A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images,...A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception.展开更多
文摘针对传统k最近邻(k-nearest neighbor,KNN)算法中需要设定k值的问题,文章提出一种基于信息熵的自适应k值KNN二分类算法(adaptive k-value KNN bisecting classification algorithm based on information entropy,EAKNN)。该算法通过引入样本比例定义信息熵,加强小样本的重要性;通过计算小于预设熵阈值的最小信息熵,得到对应的k值和模型分数;在此基础上,结合提出的精度提升模型计算得到模型精度,不断迭代模型精度,直到模型精度最大化。实验结果表明,该算法提升模型精度明显,分类准确率高。
文摘为了充分利用实际高速公路路段交通拥堵信息,更合理地聚类交通拥堵的内在规律和特征变化,提出自适应确定聚类中心C和类别K值(adaptive center and K-means value,ACK-Means)的聚类算法,进行高速公路拥堵路段聚类。ACK-Means算法借助簇类密度、簇类间距以及簇类强度,同时又考虑到数据样本的偶然性,对离群点进行合理分配,ACK-Means算法可实现自适应确定聚类中心C和类别K值。基于实际交通拥堵信息构建数据集,Python编程实现高速公路拥堵路段ACK-Means聚类,巧妙解决了高速公路拥堵路段聚类数目K和聚类中心C设定问题。聚类结果表明,ACK-Means算法实现高速公路拥堵路段无监督聚类,聚类结果完全基于实际的高速公路交通拥堵信息,具有更高的实用性。
文摘在智能交通系统中,准确和高效的短时交通流量预测是交通诱导、管理和控制的前提。由于交通流量动态变化中表现出的时变性和非平稳性特征,其预测难度较大,是交通领域中亟待解决的难题。为提高短时交通流量的预测精度,本文设计与实现了基于自适应时序剖分与KNN(A-TS-KNN)的短时交通流量预测算法。①基于动态时间规整(Dynamic Time Warping,DTW)动态剖分单日时序为不同的交通模式;②在不同交通模式,采用互信息法求解每个预测时刻时间延迟的最大阈值,构造不同时间延迟的状态向量,生成交通流量历史数据库;③采用十次十折交叉验证的方法求解每个时刻不同时间延迟与不同K值的正交误差结果分布,提取误差最小的正交结果,得到自适应时间延迟与K值的参数组合;④采用K个最相似的近邻的距离倒数加权值作为预测结果。对比K近邻(K-nearest neighbors,KNN)、支持向量回归(Support vector regression,SVR)、长短期记忆神经网络(Long-short term memory neural network,LSTM)以及门控递归单元神经网络(Gate recurrent unit neural network,GRU)共4种主流预测模型,A-TS-KNN算法预测精度显著提升;将A-TS-KNN算法用于福州市城市路网中其他交叉路口的短时交通流量预测,结果表现出良好的泛化能力。
基金partially supported by the National Natural Science Foundation of China under Grants No. 61071146, No. 61171165the Natural Science Foundation of Jiangsu Province under Grant No. BK2010488+1 种基金sponsored by Qing Lan Project, Project 333 "The Six Top Talents" of Jiangsu Province
文摘A Single Image Super-Resolution (SISR) reconstruction method that uses clustered sparse representation and adaptive patch aggregation is proposed. First, we randomly extract image patch pairs from the training images, and divide these patch pairs into different groups by K-means clustering. Then, we learn an over-complete sub-dictionary pair offline from corresponding group patch pairs. For a given low-resolution patch, we adaptively select one sub-dictionary to reconstruct the high resolution patch online. In addition, non-local self-similarity and steering kernel regression constraints are integrated into patch aggregation to improve the quality of the recovered images. Experiments show that the proposed method is able to realize state-of-the-art performance in terms of both objective evaluation and visual perception.