期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
机载LiDAR航带旁向重叠对针叶林结构参数估测的影响
被引量:
1
1
作者
尤号田
邢艳秋
+1 位作者
彭涛
丁建华
《林业科学》
EI
CAS
CSCD
北大核心
2018年第6期109-118,共10页
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云...
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云数据进行去噪、点云分类、高程归一化和重叠点移除等处理,从重叠点移除前、重叠点和重叠点移除后的点云数据中分别提取一系列样方点云高度分位数(HP1、HP5、HP10、…、HP99、Hmax和Hmean)和激光穿透指数(LPI),借助留一交叉验证建立并评价樟子松和长白落叶松林分平均高和LAI估测模型的精度,通过对比分析估测模型的决定系数(R2)和均方根误差(RMSE)揭示机载LiDAR航带旁向重叠对针叶林林分平均高和LAI估测的影响。【结果】对樟子松林分平均高估测而言,重叠点移除前林分平均高的最高估测精度(R2=0.873,RMSE=0.940)出现在HP90处,重叠点林分平均高的最高估测精度(R2=0.892,RMSE=0.866)出现在HP80处,而重叠点移除后林分平均高的最高估测精度(R2=0.892,RMSE=0.868)出现在HP55处;对长白落叶松林分平均高估测而言,重叠点移除前、重叠点和重叠点移除后林分平均高的最高估测精度均出现在HP99处,R2分别为0.725、0.719和0.741,RMSE分别为1.196、1.209和1.161。对樟子松LAI估测而言,重叠点移除前估测结果 R2为0.666,RMSE为0.220,重叠点估测结果 R2为0.551,RMSE为0.255,重叠点移除后R2提高到0.794,RMSE降低为0.172;对长白落叶松LAI估测而言,重叠点移除前估测结果 R2为0.654,RMSE为0.110,重叠点估测结果 R2为0.640,RMSE为0.112,与樟子松估测结果一致,重叠点移除后长白落叶松LAI估测精度大幅度提高,R2变为0.762,RMSE变为0.091。【结论】无论是林分平均高还是森林LAI,相邻航带旁向重叠点移除后的估测精度均高于重叠点移除前和重叠点,且樟子松的估测精度高于长白落叶松。对林分平均高而言,樟子松和长白落叶松达到最高估测精度时所对应的点云高度分位数不同。机载LiDAR点云数据相邻航带旁向重叠点的移除可有效提高森林结构参数的估测精度,在未来机载LiDAR点云数据预处理时应加入重叠点移除操作。
展开更多
关键词
机载激光雷达
航带旁向重叠
针叶林
平均树高
叶面积指数
下载PDF
职称材料
题名
机载LiDAR航带旁向重叠对针叶林结构参数估测的影响
被引量:
1
1
作者
尤号田
邢艳秋
彭涛
丁建华
机构
桂林理工大学测绘地理信息学院
东北林业大学森林作业与环境研究中心
出处
《林业科学》
EI
CAS
CSCD
北大核心
2018年第6期109-118,共10页
基金
林业公益性行业科研专项经费(201504319)
广西自然科学基金项目(2017GXNSFDA198016)
桂林理工大学科研启动基金
文摘
【目的】研究机载LiDAR航带旁向重叠对针叶林林分平均高和森林叶面积指数(LAI)估测的影响,为机载LiDAR点云数据区域森林结构参数估测提供参考。【方法】野外分别测定30块樟子松、33块长白落叶松样地的林分平均高和LAI,对原始LiDAR点云数据进行去噪、点云分类、高程归一化和重叠点移除等处理,从重叠点移除前、重叠点和重叠点移除后的点云数据中分别提取一系列样方点云高度分位数(HP1、HP5、HP10、…、HP99、Hmax和Hmean)和激光穿透指数(LPI),借助留一交叉验证建立并评价樟子松和长白落叶松林分平均高和LAI估测模型的精度,通过对比分析估测模型的决定系数(R2)和均方根误差(RMSE)揭示机载LiDAR航带旁向重叠对针叶林林分平均高和LAI估测的影响。【结果】对樟子松林分平均高估测而言,重叠点移除前林分平均高的最高估测精度(R2=0.873,RMSE=0.940)出现在HP90处,重叠点林分平均高的最高估测精度(R2=0.892,RMSE=0.866)出现在HP80处,而重叠点移除后林分平均高的最高估测精度(R2=0.892,RMSE=0.868)出现在HP55处;对长白落叶松林分平均高估测而言,重叠点移除前、重叠点和重叠点移除后林分平均高的最高估测精度均出现在HP99处,R2分别为0.725、0.719和0.741,RMSE分别为1.196、1.209和1.161。对樟子松LAI估测而言,重叠点移除前估测结果 R2为0.666,RMSE为0.220,重叠点估测结果 R2为0.551,RMSE为0.255,重叠点移除后R2提高到0.794,RMSE降低为0.172;对长白落叶松LAI估测而言,重叠点移除前估测结果 R2为0.654,RMSE为0.110,重叠点估测结果 R2为0.640,RMSE为0.112,与樟子松估测结果一致,重叠点移除后长白落叶松LAI估测精度大幅度提高,R2变为0.762,RMSE变为0.091。【结论】无论是林分平均高还是森林LAI,相邻航带旁向重叠点移除后的估测精度均高于重叠点移除前和重叠点,且樟子松的估测精度高于长白落叶松。对林分平均高而言,樟子松和长白落叶松达到最高估测精度时所对应的点云高度分位数不同。机载LiDAR点云数据相邻航带旁向重叠点的移除可有效提高森林结构参数的估测精度,在未来机载LiDAR点云数据预处理时应加入重叠点移除操作。
关键词
机载激光雷达
航带旁向重叠
针叶林
平均树高
叶面积指数
Keywords
airborne LiDAR
side-overlap between adjacent swaths
coniferous forest
mean tree height
leaf area index(LAI)
分类号
S757 [农业科学—森林经理学]
TP79 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
机载LiDAR航带旁向重叠对针叶林结构参数估测的影响
尤号田
邢艳秋
彭涛
丁建华
《林业科学》
EI
CAS
CSCD
北大核心
2018
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部