Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the Sou...Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.展开更多
t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the ve...t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12)the National Natural Science Foundation of China (Nos. 41030855,41006013)
文摘Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.
基金Supported by the National Natural Science Foundation of China (No. 40637034), the National High Technology Research and Development Program of China(No. 2006AA12Z309, 2006AAO9Z138, 2007AA12Z346).
文摘t Gravity anomalies on a2.5 ×2.5 arc-minute grid in a non-tidal system were derived over the South China and Philippine Seas from multi-satellite altimetry data. North and east components of deflections of the vertical were computed from altimeter-derived sea surface heights at crossover locations, and gridded onto a 2.5 × 2.5 arc-minute resolution grid. EGM96-derived components of deflections of the vertical and gravity anomalies gridded into 2.5 × 2.5 arc-minute resolutions were then used as reference global geopotential model quantities in a remove-restore procedure to implement the Inverse Vening Meinesz formula via the 1D-FFT technique to predict the gravity anomalies over the South China and Philippine Seas from the gridded altimeter-derived components of deflections of the vertical. Statistical comparisons between the altimeter-derived and the shipboard gravity anomalies showed that there is a root-mean-square agreement of 5.7 mgals between them.