扭曲的文档图像会干扰文档图像的光学字符识别(Optical Character Recognition,OCR).为了对扭曲形变的文档图像进行矫正,提高扭曲文档识别的正确率,基于目标检测与分割的网络,提出文档图像的边缘检测方法,使用贝塞尔(Bezier)曲线拟合文...扭曲的文档图像会干扰文档图像的光学字符识别(Optical Character Recognition,OCR).为了对扭曲形变的文档图像进行矫正,提高扭曲文档识别的正确率,基于目标检测与分割的网络,提出文档图像的边缘检测方法,使用贝塞尔(Bezier)曲线拟合文档图像的边缘曲线,通过目标检测的算法回归Bezier曲线的控制点.将文档图像的边缘检测转化为边缘曲线Bezier控制点的回归,使用文档的边缘点计算扭曲文档矫正后的矩形模板,然后将文档图像通过薄板样条插值(Thin Plate Spline,TPS)算法重映射到矩形模板中,完成文档的矫正.实验结果表明,提出的矫正方法能够对扭曲文档进行精确的边缘提取,和其他算法相比,经该算法矫正后的文档图像,其OCR的正确率有较大的提升.展开更多
文摘扭曲的文档图像会干扰文档图像的光学字符识别(Optical Character Recognition,OCR).为了对扭曲形变的文档图像进行矫正,提高扭曲文档识别的正确率,基于目标检测与分割的网络,提出文档图像的边缘检测方法,使用贝塞尔(Bezier)曲线拟合文档图像的边缘曲线,通过目标检测的算法回归Bezier曲线的控制点.将文档图像的边缘检测转化为边缘曲线Bezier控制点的回归,使用文档的边缘点计算扭曲文档矫正后的矩形模板,然后将文档图像通过薄板样条插值(Thin Plate Spline,TPS)算法重映射到矩形模板中,完成文档的矫正.实验结果表明,提出的矫正方法能够对扭曲文档进行精确的边缘提取,和其他算法相比,经该算法矫正后的文档图像,其OCR的正确率有较大的提升.