电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了...电力电子化的直流配电网存在低惯性问题,不利于系统稳定运行。混合储能设备可向电网提供虚拟惯性,但不同类型的储能之间存在功率协调问题,并且储能的荷电状态(state of charge, SOC)对虚拟惯性的调节也有约束作用。针对上述问题,提出了一种自适应时间常数的分频控制策略,时间常数根据混合储能系统(hybridenergy storage system, HESS)的SOC而动态调整以改变功率分配。首先,通过分析储能SOC与虚拟惯性的关系,并考虑储能充放电极限问题,研究兼顾SOC、电压变化率以及电压幅值的自适应虚拟惯性控制策略,提高系统惯性。然后,建立控制系统的小信号模型,分析虚拟惯性系数对系统的影响。最后,基于Matlab/Simulink搭建直流配电网仿真模型,验证了所提控制策略能合理分配HESS功率,提高超级电容器利用率,改善直流电压与功率稳定性。展开更多
传统风电机组虚拟惯性控制的惯性时间常数较大,虽抑制了频率变化率(Rate of Change of Frequency,ROCOF),但也阻碍了频率的恢复。文章提出了一种风电机组自适应虚拟惯性控制,该控制在频率扰动初期能够提供适当的虚拟惯性支撑,同时在频...传统风电机组虚拟惯性控制的惯性时间常数较大,虽抑制了频率变化率(Rate of Change of Frequency,ROCOF),但也阻碍了频率的恢复。文章提出了一种风电机组自适应虚拟惯性控制,该控制在频率扰动初期能够提供适当的虚拟惯性支撑,同时在频率恢复期间加快频率恢复。首先,文章控制策略在频率跌落或者上升阶段,根据ROCOF的最大值,自适应计算出虚拟惯性时间常数。该值一直保持到ROCOF的极性发生变化,切换至根据ROCOF计算出的虚拟惯性时间常数,此时的ROCOF较小,虚拟惯性时间常数趋于零。故在频率恢复阶段,风电机组退出虚拟惯性支撑,从而帮助频率加快恢复。在PSCAD/EMTDC中搭建仿真算例,仿真结果,表明文章所提控制策略能够提供虚拟惯性支撑和加快扰动后频率恢复。展开更多
文摘传统风电机组虚拟惯性控制的惯性时间常数较大,虽抑制了频率变化率(Rate of Change of Frequency,ROCOF),但也阻碍了频率的恢复。文章提出了一种风电机组自适应虚拟惯性控制,该控制在频率扰动初期能够提供适当的虚拟惯性支撑,同时在频率恢复期间加快频率恢复。首先,文章控制策略在频率跌落或者上升阶段,根据ROCOF的最大值,自适应计算出虚拟惯性时间常数。该值一直保持到ROCOF的极性发生变化,切换至根据ROCOF计算出的虚拟惯性时间常数,此时的ROCOF较小,虚拟惯性时间常数趋于零。故在频率恢复阶段,风电机组退出虚拟惯性支撑,从而帮助频率加快恢复。在PSCAD/EMTDC中搭建仿真算例,仿真结果,表明文章所提控制策略能够提供虚拟惯性支撑和加快扰动后频率恢复。