期刊文献+
共找到228篇文章
< 1 2 12 >
每页显示 20 50 100
基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法
1
作者 薛健侗 马宏忠 +2 位作者 倪一铭 万可力 迮恒鹏 《高电压技术》 EI CAS CSCD 北大核心 2024年第8期3783-3792,共10页
为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵... 为了更加准确有效地对变压器绕组状态进行分析,提出了一种基于混沌理论与蜉蝣优化K-means算法的变压器绕组松动故障特征分析方法。首先,运用C-C法重构变压器振动信号的相空间,分析变压器振动信号的混沌特性,得到关联维数、Kolmogorov熵作为混沌特征。然后,将蜉蝣优化算法引入K-means聚类分析中,对高维相空间轨迹的簇中心选取进行优化,得到相轨迹的簇中心矩之和、矢径偏移,并作为几何特征。实验结果表明:变压器振动信号的最大Lyapunov指数均大于0,适用于混沌特性分析;由变压器振动信号计算出的混沌特征能够表征变压器绕组的松紧程度;同时,经蜉蝣优化的K-means算法得到的簇中心能够作为特征点提取整个相空间轨迹的几何特征,也能够区分绕组的松动故障;将两种特征结合能够实现变压器绕组状态的准确监测,从而为变压器绕组在线检修提供了一种理论依据。 展开更多
关键词 变压器 绕组松动 混沌理论 蜉蝣优化k-means算法 混沌特征 几何特征
下载PDF
基于BBO优化K-means算法的WSN分簇路由算法 被引量:1
2
作者 彭程 谭冲 +1 位作者 刘洪 郑敏 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2024年第3期357-364,共8页
针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子... 针对无线传感器网络中传感器节点能量有限、网络生存期短的问题,提出一种基于生物地理学算法优化K-means的无线传感器网络分簇路由算法BBOK-GA。成簇阶段,通过生物地理学优化算法改进K-means算法,避免求解时陷入局部最优。根据能量因子和距离因子设计了新的适应度函数选举最优簇首,完成分簇任务。数据传输阶段,则利用遗传算法为簇首节点搜寻到基站的最佳数据传输路径。仿真结果表明,相较于LEACH、LEACH-C、K-GA等算法,BBOK-GA降低了网络能耗,提高了网络吞吐量,延长了网络生存周期。 展开更多
关键词 无线传感器网络 生物地理学优化算法 遗传算法 k-means算法 分簇路由
下载PDF
基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷分析方法
3
作者 杨洪苏 马宏忠 薛健侗 《科学技术与工程》 北大核心 2024年第25期10798-10807,共10页
为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的... 为了更加有效地对变压器铁心状态进行分析,提出一种基于混沌理论与麻雀优化K-means算法的变压器铁心松动缺陷特征分析方法。首先,运用C-C法求解重构相空间的嵌入维数与延迟时间,重构变压器振动信号的相空间。其次,计算变压器振动信号的最大Lyapunov指数来判断系统是否具有混沌特性,选取关联维数、Kolmogorov熵作为一组混沌特征以识别铁心的松动程度。再次,将麻雀搜索算法引入K-means聚类算法优化初始中心簇的选取并使用簇中心与簇类点的位移平均值作为描述变压器铁心松动状态的定量特征。最后,将两组特征结合起来形成变压器铁心松动故障的诊断指标,为变压器铁心的松动故障诊断提供理论依据,并投入分类器进行故障诊断,验证两组特征结合的优越性。 展开更多
关键词 变压器 铁心松动 故障诊断 混沌理论 麻雀优化k-means算法
下载PDF
基于K-means聚类算法的洁净厂房无线网络AP布局优化设计
4
作者 李柏 郭晨 +6 位作者 李博 杨志泽 邵琰 马延 胡东阳 王承馀 易力 《现代工业经济和信息化》 2024年第9期127-129,共3页
基于K-means聚类算法,将无线网络使用点作为聚类对象进行聚类计算,输出不同聚类簇下的AP布局点,并通过检测优化前后相同使用点的无线网络信号强度评估优化效果。在使用相同AP数量的情况下,优化后的布局方案使用点的平均信号强度能明显... 基于K-means聚类算法,将无线网络使用点作为聚类对象进行聚类计算,输出不同聚类簇下的AP布局点,并通过检测优化前后相同使用点的无线网络信号强度评估优化效果。在使用相同AP数量的情况下,优化后的布局方案使用点的平均信号强度能明显提升。同时如果要增加AP数量以提高所有使用点的信号强度,该算法也给出了较好的指导方案。该算法可以给出提高洁净厂房无线网络使用点信号强度的AP布局优化设计方案。 展开更多
关键词 无线网络 AP k-means聚类算法 布局优化 信号强度
下载PDF
基于自适应遗传优化k-means算法的高校学情分析
5
作者 张露露 《吉林农业科技学院学报》 2024年第3期17-20,68,共5页
为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足... 为对高校学生学习过程与学习行为进行深度分析,帮助教师实现精准化教学,本文基于某高校计算机及相关专业学生数字逻辑课程学习过程相关数据,探索一种自适应策略的遗传优化k-means算法来进行高校学情分析。首先针对k-means算法存在的不足,提出通过遗传算法的交叉操作和变异操作获取最优解,同时通过自适应策略动态地调整交叉概率和变异概率,避免过早产生次优解;其次对学生数字逻辑学习过程相关数据执行自适应策略的遗传优化k-means算法;最后对算法执行结果进行分析。结果表明,本文研究的基于自适应策略的遗传优化k-means算法能够获得更加有效的分析结果。 展开更多
关键词 学情分析 k-means算法 遗传优化 自适应
下载PDF
改进灰狼优化算法的K-Means文本聚类 被引量:15
6
作者 潘成胜 张斌 +2 位作者 吕亚娜 杜秀丽 邱少明 《计算机工程与应用》 CSCD 北大核心 2021年第1期188-193,共6页
针对K-Means算法在文本聚类过程中易陷入局部最优,造成文本聚类结果不准确的问题,提出了一种基于改进灰狼优化算法的K-Means文本聚类方法。在对文本数据进行分词、去停用词、特征提取以及文本向量化后,通过免疫克隆选择选出精英个体,并... 针对K-Means算法在文本聚类过程中易陷入局部最优,造成文本聚类结果不准确的问题,提出了一种基于改进灰狼优化算法的K-Means文本聚类方法。在对文本数据进行分词、去停用词、特征提取以及文本向量化后,通过免疫克隆选择选出精英个体,并对精英个体进行深度探索以增加灰狼种群的多样性,避免早熟收敛现象的发生;将粒子群位置更新思想与灰狼位置更新结合,降低灰狼优化算法陷入局部极值的风险;与K-Means算法结合进行文本聚类。所提算法与K-Means算法、GWO-KMeans以及IPSK-Means算法相比,其准确率、召回率和F值平均都有明显提高,文本聚类结果更可靠。 展开更多
关键词 k-means算法 文本聚类 灰狼优化算法 免疫克隆 粒子群
下载PDF
基于改进k-means和遗传算法的油田特种车辆优化调度 被引量:2
7
作者 戴永寿 李韶光 +1 位作者 李立刚 于肖雯 《计算机应用》 CSCD 北大核心 2016年第A01期86-89,共4页
针对采油厂特种车辆数目少、作业任务多、调度复杂且人工安排结果差的问题,提出了一种基于改进k-means和遗传算法的多目标分阶段求解的特车优化调度方法。该方法以最少车辆使用数目为主要目标,采用改进k-means算法完成对所有任务的最优... 针对采油厂特种车辆数目少、作业任务多、调度复杂且人工安排结果差的问题,提出了一种基于改进k-means和遗传算法的多目标分阶段求解的特车优化调度方法。该方法以最少车辆使用数目为主要目标,采用改进k-means算法完成对所有任务的最优分组;以最大任务完成数目为次要目标,利用基于贪婪修正策略和裂变策略的改进遗传算法调整最优分组方案;最后,以最短行驶距离为次要目标,利用穷举法优化行车路线。理论分析和仿真实验表明,k-means算法求得的任务分组结果要明显优于禁忌搜索算法、模拟退火算法,改进遗传算法求得的任务完成结果要比传统遗传算法好,故该方法可在现有车辆不足的情况下尽可能多地完成上报的需求不同的任务,并减少车辆的行驶距离,因此尤其适用于求解车载能力有限的需车型、需车数不确定的调度问题。 展开更多
关键词 特种车辆 优化调度 多目标 k-means算法 遗传算法
下载PDF
基于时间因子的混沌粒子群优化K-means算法 被引量:3
8
作者 王建芳 郝丽静 《河南理工大学学报(自然科学版)》 CAS 北大核心 2016年第4期539-544,共6页
针对传统的K-means算法对初始聚类中心取值敏感和易陷入局部最优解等缺点,提出一种带时间因子的改进粒子群优化(Particle Swarm Optimization,PSO)聚类算法。首先在PSO算法中引入反映时间效应的动态调整时间因子,以避免粒子在最优解附... 针对传统的K-means算法对初始聚类中心取值敏感和易陷入局部最优解等缺点,提出一种带时间因子的改进粒子群优化(Particle Swarm Optimization,PSO)聚类算法。首先在PSO算法中引入反映时间效应的动态调整时间因子,以避免粒子在最优解附近震荡,为保证粒子在规定范围内运动,采用边界缓冲墙对越界粒子进行处理;其次针对粒子群算法存在的全局搜索性能问题,通过改进的混沌技术对粒子群进行扰动,以混沌搜索替代随机搜索,确保种群的多样性,进而使粒子群向更优的方向移动;最后将改进后的粒子群算法结合K-means算法,以提高粒子的局部勘探能力,从而更快地找到全局最优位置。对UCI中的Iris数据集和Wine数据集仿真表明,该算法相比其他2种算法,聚类准确率分别增长了5.1%和1.3%,1.79%和1.09%。 展开更多
关键词 k-means 混沌技术 粒子群优化算法 时间因子
下载PDF
K-means聚类中心的鲁棒优化算法 被引量:7
9
作者 罗倩 《计算机工程与设计》 北大核心 2015年第9期2395-2400,共6页
针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等... 针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等问题。通过对仿真数据和标准数据集的实验,验证了采用该算法收敛的聚类中心非常接近标准数据集的实际中心,具有较优的聚类准确性、鲁棒性和收敛速度。 展开更多
关键词 k-means聚类算法 初始聚类中心 邻域距离加权 聚类优化 鲁棒算法
下载PDF
基于搜寻者优化算法的K-means聚类算法 被引量:6
10
作者 王盛慧 夏永丰 《燕山大学学报》 CAS 北大核心 2018年第5期422-426,433,共6页
针对K-means聚类算法易陷入局部最优的问题,提出一种改进的K-means算法,将搜寻者优化算法(SOA)和K-means聚类算法结合起来,利用SOA鲁棒性好、全局搜索能力强的特点,通过确定搜寻者的搜索方向和搜索步长,更新搜寻者的位置,进行全局寻优,... 针对K-means聚类算法易陷入局部最优的问题,提出一种改进的K-means算法,将搜寻者优化算法(SOA)和K-means聚类算法结合起来,利用SOA鲁棒性好、全局搜索能力强的特点,通过确定搜寻者的搜索方向和搜索步长,更新搜寻者的位置,进行全局寻优,提高K-means聚类算法的聚类精确度。在仿真实验过程中,首先,选取具有代表性的处于三种燃烧状态的水泥回转窑窑内视频图像为研究对象,分别采用K-means算法和改进后的算法进行仿真实验,实验结果表明,改进算法所获得的图像聚类效果更加精确;然后,分别用上述两种算法对数据集Iris和Wine进行相关测试,结果表明,改进算法的聚类精确度和运行效率都得到了有效提高。 展开更多
关键词 k-means聚类算法 搜寻者优化算法 全局寻优 聚类精确度
下载PDF
基于狮群优化的改进K-Means聚类算法研究 被引量:8
11
作者 胡啸 王玲燕 +2 位作者 张浩宇 常宇超 王银 《控制工程》 CSCD 北大核心 2022年第11期1996-2002,共7页
针对K-Means聚类算法对初始聚类中心选择依赖性强的问题,利用狮群优化算法的快速收敛性及易于获取全局最优解的优势,提出了一种基于狮群优化的改进K-Means聚类算法。通过狮群优化算法对狮王不断迭代更新,优化狮王位置,将算法停止执行时... 针对K-Means聚类算法对初始聚类中心选择依赖性强的问题,利用狮群优化算法的快速收敛性及易于获取全局最优解的优势,提出了一种基于狮群优化的改进K-Means聚类算法。通过狮群优化算法对狮王不断迭代更新,优化狮王位置,将算法停止执行时的狮王最优解作为聚类中心,替代传统算法经过随机初始化得到具有不确定因素的聚类中心。选择UCI数据集进行验证,实验结果表明,改进算法的聚类效果较好,有效降低了K-Means对初始聚类中心的依赖。将改进的K-Means聚类算法应用于点云精简过程,获得了较好的点云精简效果。 展开更多
关键词 聚类分析 k-means聚类算法 狮群优化算法 聚类中心 点云精简
下载PDF
基于k-means算法的k值优化的研究与应用 被引量:6
12
作者 顾洪博 《海南大学学报(自然科学版)》 CAS 2009年第4期386-389,共4页
k-means算法是经常使用的一种聚类算法,但是易受聚类个数k的影响,其性能主要取决于k值优化,因此对近年来k-means算法的研究现状与进展进行总结。对较有代表性的k值优化的k-means算法,从思想、关键技术等方面进行分析概括,并选用著名数... k-means算法是经常使用的一种聚类算法,但是易受聚类个数k的影响,其性能主要取决于k值优化,因此对近年来k-means算法的研究现状与进展进行总结。对较有代表性的k值优化的k-means算法,从思想、关键技术等方面进行分析概括,并选用著名数据集对一些典型算法进行了测试,主要从同一个数据集、不同的k值优化情况进行对比分析.上述工作将为聚类分析和数据挖掘的研究提供有益的参考. 展开更多
关键词 k-means算法 有效性度量 k值优化
下载PDF
基于K-means优化的SOM神经网络算法的视频推荐系统 被引量:3
13
作者 付丽梅 《软件工程》 2022年第10期17-19,7,共4页
为解决视频推荐系统中推荐精度不够精准的问题,提出一种K-means优化的自组织映射(Self-organizing Map,SOM)神经网络视频推荐方法。首先,爬取视频网站的数据并对其进行处理;其次,将处理后的数据输入K-means算法优化的SOM神经网络中,得... 为解决视频推荐系统中推荐精度不够精准的问题,提出一种K-means优化的自组织映射(Self-organizing Map,SOM)神经网络视频推荐方法。首先,爬取视频网站的数据并对其进行处理;其次,将处理后的数据输入K-means算法优化的SOM神经网络中,得到聚类结果;最后通过计算归类视频的弹幕数量、点击量、评分等推荐出优秀的视频。文中系统的预期结果为在主界面选择分类并输入关键词之后,通过算法计算,为用户推荐感兴趣的视频,并按评分高低列出视频的超链接。实验结果表明,优化的SOM算法在视频推荐的精度上提升了5%—8%。 展开更多
关键词 视频推荐 k-means SOM算法 优化
下载PDF
基于Hadoop的灰狼优化K-means算法在主题发现的研究 被引量:2
14
作者 王林 陈青超 《微电子学与计算机》 2022年第4期24-32,共9页
快速准确的在海量网络数据中发现热点主题对于网络舆情监控具有重要作用.针对K-means算法对初始中心点选择敏感和全局搜索能力不足的问题,提出一种基于Hadoop的改进灰狼优化K-means的IGWO-KM算法.首先,该算法将灰狼优化算法和K-means算... 快速准确的在海量网络数据中发现热点主题对于网络舆情监控具有重要作用.针对K-means算法对初始中心点选择敏感和全局搜索能力不足的问题,提出一种基于Hadoop的改进灰狼优化K-means的IGWO-KM算法.首先,该算法将灰狼优化算法和K-means算法相结合,利用灰狼优化算法收敛速度快和可全局寻优的优势为K-means搜索最佳聚类中心,减小随机选取初始中心点而导致的聚类结果不稳定性,以获取更好的聚类结果.其次,使用非线性收敛因子改进灰狼优化算法,协调算法的全局和局部的搜索能力.然后,引入正弦余弦算法并进行改进,增强灰狼优化算法的全局搜索能力,优化寻优精度和收敛速度,避免陷入局部最优.之后,使用近邻空间球减少K-means聚类过程中冗余的距离计算加快算法收敛.最后,利用Hadoop集群可批量处理数据的特性,实现算法的并行化.实验结果表明,IGWO-KM算法具有更好的寻优精度和稳定性,相比于GWO-KM算法和K-means,该算法在查准率、召回率和F值均有明显提高,且具有良好的收敛速度和拓展性. 展开更多
关键词 文本聚类 k-means算法 主题发现 灰狼优化算法 分布式计算
下载PDF
基于影响空间的初始中心点优化K-means聚类算法 被引量:2
15
作者 赵文冲 蔡江辉 张继福 《太原科技大学学报》 2016年第5期347-353,共7页
针对K-means聚类算法依赖初始点、聚类结果受初始点的选取影响较大的缺陷,给出了一种稳定的基于影响空间的初始点优化K-means聚类算法。该算法借助了影响空间数据结构和定义的加权距离吸引因子,将特殊中心点合并为K个微簇,并对微簇中的... 针对K-means聚类算法依赖初始点、聚类结果受初始点的选取影响较大的缺陷,给出了一种稳定的基于影响空间的初始点优化K-means聚类算法。该算法借助了影响空间数据结构和定义的加权距离吸引因子,将特殊中心点合并为K个微簇,并对微簇中的数据点加权平均得到K个初始中心点,然后执行K-means算法;最后,理论分析和实验结果表明,该初始点优化K-means聚类算法能够有效降低噪声数据对聚类结果的影响,在聚类结果、聚类过程效率方面有较大优势。 展开更多
关键词 k-means算法 影响空间 加权距离吸引因子 初始点优化
下载PDF
一种基于改进差分进化的K-Means聚类算法研究
16
作者 刘红达 王福顺 +3 位作者 孙小华 张广辉 王斌 何振学 《现代电子技术》 北大核心 2024年第18期156-162,共7页
为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多... 为改进传统K-Means聚类算法中因随机选取初始聚类中心而导致聚类结果不稳定且效率低的缺点,提出一种基于改进差分进化的K-Means聚类算法(AGDE-KM)。首先,设计自适应操作算子来提升算法前期的全局搜索能力和后期的收敛速度;其次,设计多变异策略并引入权重系数,在算法的不同进化阶段发挥不同变异策略的优势,平衡算法的全局和局部搜索能力,加快算法的收敛速度;最后,提出一种基于当前种群最佳个体的高斯扰动交叉操作,为个体提供更优进化方向的同时保持种群在“维”上的多样性,避免算法陷入局部最优。将算法停止执行时输出的最优解作为初始聚类中心替代传统K-Means随机选取的聚类中心。将提出算法在UCI公共数据库中的Vowel、Iris、Glass数据集和合成数据集Jcdx上进行对比实验,误差平方和(SSE)相对于传统K-Means分别减小5.65%、19.59%、13.31%、6.1%,聚类时间分别减少83.03%、81.33%、77.47%、92.63%。实验结果表明,提出的改进算法具有更快的收敛速度和更好的寻优能力,显著提升了聚类的效果、效率和稳定性。 展开更多
关键词 k-means聚类算法 差分进化算法 多变异策略 高斯扰动 UCI数据库 聚类中心优化
下载PDF
基于Flink的鲸鱼优化K-Means算法 被引量:3
17
作者 于志良 《互联网周刊》 2023年第4期83-85,共3页
针对K-Means聚类算法依赖于初始聚类中心选择的问题,利用鲸鱼优化算法易于获取全局最优解及快速收敛性的优势,结合分布式框架的并行优势,提出了一种基于Flink的鲸鱼优化K-Means聚类算法。通过鲸鱼优化算法对领头鲸迭代更新、优化位置,... 针对K-Means聚类算法依赖于初始聚类中心选择的问题,利用鲸鱼优化算法易于获取全局最优解及快速收敛性的优势,结合分布式框架的并行优势,提出了一种基于Flink的鲸鱼优化K-Means聚类算法。通过鲸鱼优化算法对领头鲸迭代更新、优化位置,用算法的最优解作为聚类中心替代K-Means算法的随机聚类中心,改进后的算法聚类效果较好、收敛速度快,有效结合了智能算法及分布式框架的优势。 展开更多
关键词 聚类算法 k-means 鲸鱼优化 Flink
下载PDF
基于离散变邻域蜉蝣优化的装配作业车间调度算法
18
作者 陈雅莉 潘友林 刘耿耿 《计算机科学》 CSCD 北大核心 2024年第9期283-289,共7页
由于受到疫情影响,企业迫切地需要通过升级改造自动化柔性生产线来实现降本增效。在这一背景下,装配作业车间调度问题(Assembly Job Shop Scheduling Problem,AJSSP)再一次成为学术界和企业界的研究热点。AJSSP比普通作业车间调度问题... 由于受到疫情影响,企业迫切地需要通过升级改造自动化柔性生产线来实现降本增效。在这一背景下,装配作业车间调度问题(Assembly Job Shop Scheduling Problem,AJSSP)再一次成为学术界和企业界的研究热点。AJSSP比普通作业车间调度问题多了一道装配阶段,故其存在前后工序相互制约和多机并行现象,问题求解也更加复杂。针对该问题,提出了一种基于离散变邻域蜉蝣优化算法(Discrete Variable Neighborhood Mayfly Algorithm,D-VNMA)的调度方法,主要工作如下:1)采用符合Lamarkian特性的编码解码机制,实现个体有效信息的迭代继承;2)使用Circle映射融合常见启发式算法初始化蜉蝣种群,保证种群的多样性;3)加入新的邻域探索策略,采用多种不同的邻域结构和搜索策略的差异组合,增加搜索方案的多样性,提高寻找局部最优解的搜索效率;4)提出改进的雌雄蜉蝣交配策略,提高算法全局探索能力,加快算法整体收敛速度。在实验过程中,通过试验设计(Design of Experiment,DOE)方法获得D-VNMA的最佳参数设置,并在不同规格AJSSP算例数据上将D-VNMA和其他算法进行比较。实验结果表明,D-VNMA得到最优解的概率提升了30%,且收敛效率最高可提升62.15%。 展开更多
关键词 装配作业车间 车间调度 蜉蝣优化算法 Circle映射 邻域搜索
下载PDF
基于B样条曲线拟合和蜉蝣算法的采煤机截割路径约束优化
19
作者 程诚 吴洪状 刘送永 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第S01期269-279,共11页
实现采煤机智能化调高,关键是解决煤岩界面识别问题、截割路径优化问题及采煤机调高控制问题。即使煤岩界面被精确识别,受到实际工作中顶底板的平整性和液压支架的推移滑溜等要求的限制,采煤机滚筒无法完全跟随煤岩界面曲线,因此需要基... 实现采煤机智能化调高,关键是解决煤岩界面识别问题、截割路径优化问题及采煤机调高控制问题。即使煤岩界面被精确识别,受到实际工作中顶底板的平整性和液压支架的推移滑溜等要求的限制,采煤机滚筒无法完全跟随煤岩界面曲线,因此需要基于煤岩界面识别结果,对起伏变化的煤岩界面曲线进行截割路径优化,得到采煤机调高控制的目标轨迹。滚筒截割路径优化是基于煤岩界面估计曲线,在采煤工艺、煤质要求和设备的适应能力等限制条件的约束下,得到使回采最大化的平滑轨迹。针对上述采煤机截割路径约束优化问题,提出一种基于B样条曲线拟合和蜉蝣算法的采煤机截割路径约束优化方法。为了提高截割路径优化效果和降低计算复杂度,以B样条曲线节点系数作为设计变量,构建一种新型截割路径优化目标函数;考虑采煤机截割工艺、煤质要求等限制,使用多段赋值罚函数法处理约束,根据约束的不满足程度动态改变罚函数系数值,避免优化陷入局部最值和约束不能起到实际作用;为了进一步提高优化效果和收敛速度,使用修正蜉蝣算法寻找最优截割路径。最后,考虑实际煤岩界面中褶皱、陷落柱、断层等典型地质构造,进行仿真研究,结果表明,所提方法能在满足实际约束下快速得到平滑的截割优化路径,实时性好、适用性高。 展开更多
关键词 采煤机 记忆截割 约束优化 蜉蝣算法 B样条曲线
下载PDF
基于K-means聚类的多种群麻雀搜索算法 被引量:1
20
作者 闫少强 刘卫东 +2 位作者 杨萍 吴丰轩 阎哲 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期508-518,共11页
为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优... 为改善麻雀搜索算法(SSA)在单种群搜索中收敛速度过快导致其收敛速度出现冗余,易忽略优质解而陷入局部最优的缺陷,提出一种基于K-means聚类的多种群麻雀搜索算法(KSSA)。将多种群机制引入SSA,减弱单种群的收敛能力,并减小陷入局部最优的概率;采用K-means聚类划分子种群,增加子种群间的差异性,同时使子种群内个体在小范围内专注搜索,提升前期搜索效率;借助加权重心交流策略改善种群间交流的质量,减少自身种群的干扰,同时消减因某一子种群陷入局部最优而导致所有子种群陷入局部最优的风险;引入动态反向学习到警戒者中,增强其反捕食行为,改善因子种群数量增加而带来的收敛速度变慢和收敛精度不足的缺陷。经测试函数仿真实验表明:较SSA等算法,KSSA具有更优的寻优性能。 展开更多
关键词 麻雀搜索算法 优化算法 多种群 k-means聚类 种群交流
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部