The forces between two molecularly smooth mica surfaces are measured in monovalent and divalent cations electrolyte solutions by a surface force apparatus (SFA). The properties of K+, Na+, and Mg2+ between molecu...The forces between two molecularly smooth mica surfaces are measured in monovalent and divalent cations electrolyte solutions by a surface force apparatus (SFA). The properties of K+, Na+, and Mg2+ between molecularly smooth mica surfaces are investigated. The Derjagui-Landau- Verwey-Overbeek (DLVO) force and the hydration force are detected in the experiment. The results show that in lower concentrations of a monovalent electrolyte solution (about 10-4 mol/L), the force curves are completely in good agreement with those computed by the DLVO theory. However, additional short-range repulsive forces which deviate from the DLVO theory are observed when the concentrations of cations are above the critical bulk concentration, which is different for each electrolyte. The results show the properties of these cations on both the screening effect adsorbed on the mica surface and the hydration in solution. From the results, the interaction energy between two hydrated ions of potassium or sodium can also be estimated.展开更多
The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under differen...The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under different pressure conditions. It was found that the chitosan was adsorbed on the mica surface and formed a stable nanofilm under acid conditions. The adsorbed chitosan nanofilms induced a short- range monotonically steric force when two such surfaces came close in the acid buffer. The adhesion forces between the two chitosan-coated mica surfaces varied with the loads. Strong adhesion between the two chitosan-coated mica surfaces was observed at high pressure. Such pressure-dependent adhesion properties are most likely related to the molecular configurations and hydrogen bonds reordering under high confinement.展开更多
An approach for studying the adsorption and desorption behaviors of single-stranded DNA( ssDNA) molecules on the mica surface by the surface forces apparatus( SFA) is reported,which can be used to characterize the...An approach for studying the adsorption and desorption behaviors of single-stranded DNA( ssDNA) molecules on the mica surface by the surface forces apparatus( SFA) is reported,which can be used to characterize the precise thickness,configuration and mechanical properties of ssDNA layers on the mica surface at a certain buffer solution. The formation of ss DNA layers is first studied by tuning the ssDNA concentrations, and the experimental results indicate that the ss DNA concentration of 100 ng / μL is ideal for forming a ssDNA monolayer structure on the mica surface, and the hardwall value measured to be 1.04 nm under this circumstance is regarded as the thickness of the ssDNA monolayer confined on mica. The desorption behavior of ssDNA molecules from the mica surface is further studied by observing and comparing different shapes of the force-distance curves under certain conditions. It is found that the desorption of ss DNA molecules from the mica surface occurs as the monovalent salts are added into the gap buffer. It is inferred that the competition effect between monovalent and divalent salts can induce the release of ssDNA from substrate.The results also reveal that 10 mmol / L monovalent salts( Na~+)is sufficient for the desorption of ssDNA from mica. This work provides an applicable method to study the binding mechanism of ss DNA molecules on inorganic substrates.展开更多
As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte sol...As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte solutions,the interaction forces between two mica surfaces immersed in different volume fractions of LaCl3/KCl and LaCl3/MgCl2 mixture solutions with a total ionic strength of 10^-4 mol/L were measured using a surface forces apparatus(SFA).The results reveal that the surface charge of mica surfaces can be inversed at a critical concentration of La^3+ions in electrolyte solutions,due to the correlations between La^3+ions.The addition of monovalent has negligible effects on ion-ion correlations,while the charge inversion was slightly suppressed by introducing the divalent ions.The mechanism of charge inversion in mixture electrolyte solutions was analyzed based on the strongly correlated liquid(SCL)theory.These findings provide implications for understanding the effects of ion-ion correlations on EDL structures,surface charge properties,and ion transportation.展开更多
The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured forc...The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.展开更多
A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ioni...A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ionization region is obtained by using multiple ultrahigh vacuum pumps. Compared with similar instruments built previously by others~ the H2, CH4 background in the ionization region can be reduced by about two orders of magnitude, and other residual gases in the ionization region can be reduced by about an order of magnitude. Therefore, the signal-to-noise ratio for the temperature programmed desorption (TPD) and time of flight (TOF) spectra is substantially enhanced, making experimental studies of pho- tocatalytic processes on surfaces much easier. In this work, we describe the new apparatus in detail and present some preliminary studies on the photo-induced oxygen vacancy defects on TiO2(110) at 266 nm by using the TPD and TOF methods. Preliminary results suggest that the apparatus is a powerful tool for studying kinetics and mechanism of photochemical processes.展开更多
基金The National Basic Research Program of China(973 Program)(No.2011CB707605)the National Natural Science Foundation of China(No.50925519,50821063)
文摘The forces between two molecularly smooth mica surfaces are measured in monovalent and divalent cations electrolyte solutions by a surface force apparatus (SFA). The properties of K+, Na+, and Mg2+ between molecularly smooth mica surfaces are investigated. The Derjagui-Landau- Verwey-Overbeek (DLVO) force and the hydration force are detected in the experiment. The results show that in lower concentrations of a monovalent electrolyte solution (about 10-4 mol/L), the force curves are completely in good agreement with those computed by the DLVO theory. However, additional short-range repulsive forces which deviate from the DLVO theory are observed when the concentrations of cations are above the critical bulk concentration, which is different for each electrolyte. The results show the properties of these cations on both the screening effect adsorbed on the mica surface and the hydration in solution. From the results, the interaction energy between two hydrated ions of potassium or sodium can also be estimated.
基金The National Basic Research Program of China(973Program)(No.2011CB707605)the National Natural Science Foundation of China(No.50925519)
文摘The surface and adhesion forces between chitosan- coated mica surfaces in an acetic acid buffer solution were measured using a surface force apparatus (SFA). The force- distance profiles were obtained under different pressure conditions. It was found that the chitosan was adsorbed on the mica surface and formed a stable nanofilm under acid conditions. The adsorbed chitosan nanofilms induced a short- range monotonically steric force when two such surfaces came close in the acid buffer. The adhesion forces between the two chitosan-coated mica surfaces varied with the loads. Strong adhesion between the two chitosan-coated mica surfaces was observed at high pressure. Such pressure-dependent adhesion properties are most likely related to the molecular configurations and hydrogen bonds reordering under high confinement.
基金The National Basic Research Program of China(973Program)(No.2011CB707605)the Fundamental Research Funds for the Central Universities(No.2242015K42085)+1 种基金the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX-0100)the Research Start-Up Fund of Southeast University
文摘An approach for studying the adsorption and desorption behaviors of single-stranded DNA( ssDNA) molecules on the mica surface by the surface forces apparatus( SFA) is reported,which can be used to characterize the precise thickness,configuration and mechanical properties of ssDNA layers on the mica surface at a certain buffer solution. The formation of ss DNA layers is first studied by tuning the ssDNA concentrations, and the experimental results indicate that the ss DNA concentration of 100 ng / μL is ideal for forming a ssDNA monolayer structure on the mica surface, and the hardwall value measured to be 1.04 nm under this circumstance is regarded as the thickness of the ssDNA monolayer confined on mica. The desorption behavior of ssDNA molecules from the mica surface is further studied by observing and comparing different shapes of the force-distance curves under certain conditions. It is found that the desorption of ss DNA molecules from the mica surface occurs as the monovalent salts are added into the gap buffer. It is inferred that the competition effect between monovalent and divalent salts can induce the release of ssDNA from substrate.The results also reveal that 10 mmol / L monovalent salts( Na~+)is sufficient for the desorption of ssDNA from mica. This work provides an applicable method to study the binding mechanism of ss DNA molecules on inorganic substrates.
基金The National Natural Science Foundation of China(No.51605090)the Natural Science Foundation of Jiangsu Province(No.BK20160776,BK20160670)Research Foundation of Nanjing Institute of Technology(No.YKJ201502)。
文摘As the structure of electrical double layer(EDL)is crucial for the transport properties of ions in micro/nanochannels,to demonstrate the effects of the ion-ion correlations on EDL structures in mixture electrolyte solutions,the interaction forces between two mica surfaces immersed in different volume fractions of LaCl3/KCl and LaCl3/MgCl2 mixture solutions with a total ionic strength of 10^-4 mol/L were measured using a surface forces apparatus(SFA).The results reveal that the surface charge of mica surfaces can be inversed at a critical concentration of La^3+ions in electrolyte solutions,due to the correlations between La^3+ions.The addition of monovalent has negligible effects on ion-ion correlations,while the charge inversion was slightly suppressed by introducing the divalent ions.The mechanism of charge inversion in mixture electrolyte solutions was analyzed based on the strongly correlated liquid(SCL)theory.These findings provide implications for understanding the effects of ion-ion correlations on EDL structures,surface charge properties,and ion transportation.
文摘The authors have investigated the pH and ionic strength response of self-assembled layers formed by adsorption of amphiphilic weak polyelectrolytes. Using the SFA (Surface Forces Apparatus) the authors measured force-distance profiles of poly (isoprene)-poly (acrylic acid) block copolymers adsorbed on mica. Also by Atomic Force Microscopy the authors captured single polyelectrolyte molecule adsorbed on a surface. The effect of salt concentration (Cs) and pH upon the height of the brush layers was explored mainly by measuring the forces between two adsorbed polyelectrolyte brushes. At pH = 4 our results are in good agreement with the scaling prediction L0 ∝Cs-1/3 Changing the pH from 4 to 10 causes a remarkable swelling of the polymer layer, but only a weak dependence on salt concentration was detected at the higher pH. This can be attributed to the degree of dissociation, which depends on the local pH value. At low pH the polyelectrolyte chains have a low charge density, while on increasing the pH the degree of dissociation rises, and the increased charge density is followed by swelling of the adsorbed layer. The local concentration of ions in the brush is now greater than that of pH = 4 and approximately equivalent to 0.3 M. So the swelling is only weakly dependent on salt concentration in the range 0.01-1.0 M. The results demonstrate the tunable nature of such self-assembled polyelectroiyte brushes whose height and range of interactions, can be systematically controlled by adjusting the pH and ionic strength of the medium.
文摘A surface photocatalysis-TPD apparatus devoted to studying kinetics and mechanism of pho- tocatalytic processes with various signal crystal surfaces has been constructed. Extremely high vacuum (-0.2 nPa) in the ionization region is obtained by using multiple ultrahigh vacuum pumps. Compared with similar instruments built previously by others~ the H2, CH4 background in the ionization region can be reduced by about two orders of magnitude, and other residual gases in the ionization region can be reduced by about an order of magnitude. Therefore, the signal-to-noise ratio for the temperature programmed desorption (TPD) and time of flight (TOF) spectra is substantially enhanced, making experimental studies of pho- tocatalytic processes on surfaces much easier. In this work, we describe the new apparatus in detail and present some preliminary studies on the photo-induced oxygen vacancy defects on TiO2(110) at 266 nm by using the TPD and TOF methods. Preliminary results suggest that the apparatus is a powerful tool for studying kinetics and mechanism of photochemical processes.