利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时...利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。展开更多
在不预热情况下 ,通过调整熔敷金属Cu和Ni的含量 ,改变铸铁激光熔敷层内奥氏体相与渗碳体相体积分数 ,分析了奥氏体相体积分数对熔敷层抗裂性的影响。在最佳激光熔敷工艺参数基础上 ,研究了Cu和Ni对熔敷层奥氏体体积分数、表面裂纹率及...在不预热情况下 ,通过调整熔敷金属Cu和Ni的含量 ,改变铸铁激光熔敷层内奥氏体相与渗碳体相体积分数 ,分析了奥氏体相体积分数对熔敷层抗裂性的影响。在最佳激光熔敷工艺参数基础上 ,研究了Cu和Ni对熔敷层奥氏体体积分数、表面裂纹率及表面耐磨性的影响。获得的未裂临界熔敷层面积为 5 5 .1cm2 ,其对应熔敷材料为Cu Ni C Si Fe。以此熔敷材料为基础 ,改变V含量 ,在熔敷层得到原位自生V2 C。研究了V2 C对熔敷层耐磨性的影响 ,分析了V2 C对熔敷层硬度及磨损质量损失的影响规律 ,最终获得了可显著提高熔敷层抗裂性及耐磨性的Cu Ni V C Si展开更多
文摘利用CMT(cold metal transfer)技术在30CrMnSi钢板表面熔敷CuSi3;采用背散射、能谱分析及X射线衍射等方法对接头区显微组织及成分进行了研究。结果表明,CMT技术实现了熔敷层与基体的冶金结合,送丝速度为5.0 m/min,焊接速度为17.0 mm/s时,稀释率极低;界面区由Fe3Si化合物、α-Fe及ε-Cu组成。送丝速度较低时,界面结构为Fe3Si/α-Fe+ε-Cu/α-Fe,熔敷区出现Fe2Si化合物;提高送丝速度,界面结构为Fe3Si+α-Fe+ε-Cu/α-Fe+ε-Cu,Fe2Si化合物被Fe3Si化合物取代;进一步提高送丝速度,界面结构为α-Fe+ε-Cu,弥散分布的球状富铁相聚合成长为星状及大块团状的α-Fe固溶体。送丝速度的变化对熔敷区组织具有显著影响。
文摘在不预热情况下 ,通过调整熔敷金属Cu和Ni的含量 ,改变铸铁激光熔敷层内奥氏体相与渗碳体相体积分数 ,分析了奥氏体相体积分数对熔敷层抗裂性的影响。在最佳激光熔敷工艺参数基础上 ,研究了Cu和Ni对熔敷层奥氏体体积分数、表面裂纹率及表面耐磨性的影响。获得的未裂临界熔敷层面积为 5 5 .1cm2 ,其对应熔敷材料为Cu Ni C Si Fe。以此熔敷材料为基础 ,改变V含量 ,在熔敷层得到原位自生V2 C。研究了V2 C对熔敷层耐磨性的影响 ,分析了V2 C对熔敷层硬度及磨损质量损失的影响规律 ,最终获得了可显著提高熔敷层抗裂性及耐磨性的Cu Ni V C Si