Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of...Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.展开更多
Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by empl...Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by employing a well-arranged membrane of reduced graphene oxide(rGO)sheet arrays embedded with silicon dioxide nanofibres(rGO/SiO2)as the evaporation intermediate layer on the liquid surface.This IED enlarges the evaporation surfaces and weakens the intermolecular forces on the liquid/solid/gas interfaces,realizing the fast and even low temperature fraction collection with less energy consumption.The IED delivers evaporation rates 200%–300%times that of TD,meanwhile having an energy saving of 40%–60%and a time saving of 50%–70%for diverse liquid feeds.In atmospheric IED manner,high boiling point and perishable organics can be collected with high quality at a temperature lower than their boiling points.This IED provides an innovative strategy for highly efficient distillation in chemical industries.展开更多
基金Projects(50436010, 50675070) supported by the National Natural Science Foundation of China Project(07118064) supported by the Natural Science Foundation of Guangdong Province, China+1 种基金 Project(U0834002) supported by the Joint Fund of NSFC-Guangdong of ChinaProjects(SY200806300289A, JSA200903190981A) supported by Shenzhen Scientific Program, China
文摘Boiling structures on evaporation surface of red copper sheet with a diameter (D) of 10 mm and a wall thickness (h) of 1 mm were processed by the ploughing-extrusion (P-E) processing method, which is one part of the phase-change heat sink for high power (HP) light emitting diode (LED). The experimental results show that two different structures of rectangular- and triangular-shaped micro-grooves are formed in P-E process. When P-E depth (ap), interval of helical grooves (dp) and rotation speed (n) are 0.12 ram, 0.2 mm and 100 r/min, respectively, the boiling structures of triangular-shaped grooves with the fin height of 0.15 mm that has good evaporation performance are obtained. The shapes of the boiling structures are restricted by dp and ap, and dp is determined by n and amount of feed (f). The ploughing speed has an important influence on the formation of groove structure in P-E process.
基金This work was supported by the Ministry of Science and Technology of China(2016YFA0200200 and 2017YFB1104300)the National Science Foundation of China(51673026,51433005 and 21805160)+1 种基金NSFC-MAECI(51861135202),NSFC-STINT(21911530143)and Beijing Natural Science Foundation(2152028).Computations were carried out on the“Explorer 100”cluster system of Tsinghua National Laboratory for Information Science and Technology.
文摘Traditional distillation(TD)is generally an energy-intensive and inefficient process for separation and purification of liquids in chemical industries.Herein,we developed an interface-enhanced distillation(IED)by employing a well-arranged membrane of reduced graphene oxide(rGO)sheet arrays embedded with silicon dioxide nanofibres(rGO/SiO2)as the evaporation intermediate layer on the liquid surface.This IED enlarges the evaporation surfaces and weakens the intermolecular forces on the liquid/solid/gas interfaces,realizing the fast and even low temperature fraction collection with less energy consumption.The IED delivers evaporation rates 200%–300%times that of TD,meanwhile having an energy saving of 40%–60%and a time saving of 50%–70%for diverse liquid feeds.In atmospheric IED manner,high boiling point and perishable organics can be collected with high quality at a temperature lower than their boiling points.This IED provides an innovative strategy for highly efficient distillation in chemical industries.