期刊文献+
共找到788篇文章
< 1 2 40 >
每页显示 20 50 100
一种道路裂缝检测的变尺度VS-UNet模型 被引量:1
1
作者 赵志宏 何朋 郝子晔 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第6期63-72,共10页
为解决目前现有的图像分割算法存在检测精度低、对裂缝检测缺乏针对性等问题,采用多尺度特征融合方法,提出一种扩展LG Block模块Extend-LG Block,其由多个并行不同膨胀率的空洞卷积组成.通过参数可调节分支数量和空洞卷积膨胀率,从而改... 为解决目前现有的图像分割算法存在检测精度低、对裂缝检测缺乏针对性等问题,采用多尺度特征融合方法,提出一种扩展LG Block模块Extend-LG Block,其由多个并行不同膨胀率的空洞卷积组成.通过参数可调节分支数量和空洞卷积膨胀率,从而改变其感受野大小,进而提取和融合不同尺度的裂缝特征.对比在深层使用多尺度特征融合模块的网络以及使用固定尺度结构进行多尺度特征融合的网络的优劣,提出一种变尺度结构的UNet模型VS-UNet,使用多个不同参数的Extend-LG Block替换UNet网络中的基本卷积块.该结构在网络浅层进行多尺度特征融合,多尺度特征融合模块提取的尺度随网络层加深逐渐减少.此结构在加强图像的细节特征提取能力的同时保持原有的抽象特征提取能力,还可避免网络参数的增加.在DeepCrack数据集以及CFD数据集上进行实验验证,结果表明,相较于其他两种结构和方法,提出的变尺度结构的网络在有更高检测精度的同时,在可视化实验对比上对各种大小的裂缝有更好的分割效果.最后与其他图像分割算法进行对比,各项指标与UNet相比均有一定程度提升,证明了网络改进的有效性.研究结果可为进一步提升道路裂缝检测效果提供参考. 展开更多
关键词 U-Net 多尺度 裂缝检测 空洞卷积 深度学习
下载PDF
基于改进YOLOv5s的道路裂缝检测算法 被引量:2
2
作者 任安虎 姜子渊 马晨浩 《激光杂志》 CAS 北大核心 2024年第4期88-94,共7页
为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global... 为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global Attention Mechanism, GAM)引入主干特征提取网络,在降低注意力复杂度的同时获得丰富的跨维度特征,增强了裂缝的识别能力;采用空间金字塔软池化网络(Spatial Pyramid Softpool, SPSF),通过Softpool池化保留多维语义以减少信息弥散,提高了边界框回归的准确性;在颈部特征增强网络,运用空洞深度可分离卷积(Atrous DSC)进行下采样,通过扩大感受野加强深层和浅层信息的聚合能力,提高裂缝识别的泛化性。经过在自制道路裂缝数据集上的实验,相较于YOLOv5s,改进算法的mAP提高2.2%,有效提升了道路裂缝检测的准确性和对不同背景下裂缝识别的泛化能力。 展开更多
关键词 道路裂缝检测 YOLOv5s算法 全局注意力机制 深度可分离卷积 Softpool池化
下载PDF
基于卷积神经网络的无人机成像桥梁裂缝检测方法研究 被引量:2
3
作者 张铁志 陈萃华 +1 位作者 黄华 周杰峰 《世界桥梁》 北大核心 2024年第3期111-118,共8页
针对桥梁裂缝病害检测困难、裂缝宽度计算精度不高的问题,提出基于卷积神经网络的无人机成像桥梁裂缝检测系统,获取桥梁裂缝图像并提取裂缝,精确计算最大裂缝宽度。该系统改造无人机实现对桥梁底面和侧面图像的采集。首先采用神经网络... 针对桥梁裂缝病害检测困难、裂缝宽度计算精度不高的问题,提出基于卷积神经网络的无人机成像桥梁裂缝检测系统,获取桥梁裂缝图像并提取裂缝,精确计算最大裂缝宽度。该系统改造无人机实现对桥梁底面和侧面图像的采集。首先采用神经网络模型筛选出裂缝图像;然后根据所采集到的图像特点,搭建基于卷积神经网络(Convolutional Neural Network,CNN)的裂缝滑动窗口检测(Slide Crack Detection,SCD)模型,进行图像的小窗口滑动识别以提取裂缝,并与采用基于裂缝图像统计特征的改进中值滤波去噪算法对比裂缝提取效果;最后提出裂缝分类及最大裂缝宽度计算方法,并与裂缝实测结果进行对比。结果表明:该无人机成像桥梁裂缝检测系统对裂缝图像的扰动小,裂缝提取效果更精确,该系统检测并计算的最大裂缝宽度相对实测结果误差在0.05 mm以内,满足桥梁裂缝检测要求。 展开更多
关键词 桥梁工程 裂缝检测 无人机 卷积神经网络 滑动窗口识别 图像处理 最大裂缝宽度
下载PDF
基于Sobel算子桥接的双编码器路面裂缝检测网络
4
作者 蓝章礼 徐元通 +2 位作者 赵胜薇 张洪 黄大荣 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第9期18-24,33,共8页
为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通... 为提高道路路面裂缝的检测精度,针对路面裂缝的多态性和噪声复杂等问题,提出了一种基于Sobel算子桥接的双编码器路面裂缝检测网络,双编码器由原图编码和梯度编码两部分组成,以解决单编码器容易丢失梯度信息的问题。首先,原图编码结果通过桥接Sobel算子计算8个方向产生梯度编码的编码信息;然后,将原图编码结果与梯度编码结果通过一个多尺度的边缘信息弥补模块,以增强裂缝的边缘信息;最后,引入动态通道图卷积获得通道之间存在的拓扑关系,以突出重要通道的语义特征。研究结果表明:所提出的方法在DeepCrack、CamCrack789和CFD这3个基准数据集上取得较好的结果;综合指标ODS在DeepCrack、CamCrack789和CFD数据集分别为87.75%、85.05%、78.83%。 展开更多
关键词 道路工程 路面裂缝检测 双编码器 SOBEL算子 边缘信息弥补 动态通道图卷积
下载PDF
基于弱监督语义分割的道路裂缝检测研究
5
作者 赵卫东 路明 张睿 《计算机科学》 CSCD 北大核心 2024年第11期148-156,共9页
基于弱监督语义分割的道路裂缝检测方法大多基于先分块后检测的流程,分块增加了标注的工作量和误判的分块数量。针对上述问题,提出了基于深度强化学习的道路裂缝分块分类模型,根据道路裂缝图像特点,对智能体的状态、动作和获取的奖励进... 基于弱监督语义分割的道路裂缝检测方法大多基于先分块后检测的流程,分块增加了标注的工作量和误判的分块数量。针对上述问题,提出了基于深度强化学习的道路裂缝分块分类模型,根据道路裂缝图像特点,对智能体的状态、动作和获取的奖励进行了设计,训练智能体自主选择裂缝分块,并将选择结果作为分块标签用于多尺寸分块道路裂缝检测。在cqu-bpdd等数据集上进行的对比实验,证明了所提方法在道路裂缝分割性能、裂缝平均宽度的测量准确度方面优于现有方法。 展开更多
关键词 道路裂缝检测 弱监督 语义分割 裂缝分块 深度强化学习
下载PDF
基于深度学习的桥梁表观裂缝检测算法研究
6
作者 张鸣祥 张睿 钟其仁 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第7期995-1002,共8页
针对在复杂背景条件下难以直接对桥梁表观裂缝进行检测的问题,文章提出一种基于深度学习的桥梁表观裂缝检测算法。首先利用滑动窗口算法将采集到的桥梁表观裂缝图像切分为小尺寸的桥梁裂缝面元图像和桥梁背景面元图像,并根据对面元图像... 针对在复杂背景条件下难以直接对桥梁表观裂缝进行检测的问题,文章提出一种基于深度学习的桥梁表观裂缝检测算法。首先利用滑动窗口算法将采集到的桥梁表观裂缝图像切分为小尺寸的桥梁裂缝面元图像和桥梁背景面元图像,并根据对面元图像的分析,提出一种基于Inception网络和残差网络(ResNet)的桥梁裂缝分类模型,用于桥梁裂缝面元和桥梁背景面元的识别;然后结合桥梁裂缝分类模型与滑动窗口算法对桥梁表观裂缝图像进行检测;最后利用数字图像处理技术测量裂缝宽度。结果表明:该文算法对桥梁表观裂缝有超过99%的分类精度,可满足实际工程需要;实现了裂缝的提取并能准确地定位出裂缝在图像中的位置;根据成像原理能测量出裂缝宽度。与传统的深度学习模型相比,该模型拥有更高的执行效率,可用于大规模检测,更易于应用在桥梁健康检测中。 展开更多
关键词 深度学习 桥梁表观裂缝检测 滑动窗口算法 Inception网络 残差网络 数字图像处理
下载PDF
基于矢量量化变分自编码器的混凝土表观裂缝检测算法
7
作者 刘超 吴纪曙 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第11期1699-1705,共7页
提出了一种基于第2代矢量量化变分自编码器(VQ-VAE-2)的自监督混凝土表观裂缝检测算法,可以在缺少裂缝样本的条件下实现高效检测。以重建误差为检测指标,利用无裂缝图片训练VQ-VAE-2,使其在重建裂缝图片时产生更大的重建误差;在计算重... 提出了一种基于第2代矢量量化变分自编码器(VQ-VAE-2)的自监督混凝土表观裂缝检测算法,可以在缺少裂缝样本的条件下实现高效检测。以重建误差为检测指标,利用无裂缝图片训练VQ-VAE-2,使其在重建裂缝图片时产生更大的重建误差;在计算重建误差时将原图和重建图片均分割成若干图块,取对应图块间重建误差最大值作为图片的重建误差,以增大2类图片的重建误差差异。结果表明,该算法的精确率为0.954,召回率为0.959,准确率为0.956,F1分数为0.957。在无裂缝样本作为训练集的情况下,该算法能较好地完成混凝土表观裂缝检测任务。 展开更多
关键词 桥梁工程 混凝土表观裂缝检测 深度学习 变分自编码器 异常检测
下载PDF
用于碳酸盐岩储层裂缝检测的GWO-CS-BP算法及应用研究
8
作者 李琼 张宇 石林坤 《石油物探》 CSCD 北大核心 2024年第4期833-845,共13页
碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)... 碳酸盐岩储层中的裂隙是油气的运移通道和储集空间,对于油气勘探、开发和评价都具有重要的指导意义。针对研究区碳酸盐岩储层裂缝检测的难题,提出灰狼布谷鸟优化BP算法(GWO-CS-BP),该算法是将GWO-CS(grey wolf-cuckoo search algorithm)与BP(back propagation)相结合形成的裂隙检测方法。将含裂缝信息的相干、曲率、倾角、方位角和构型张量等属性作为GWO-CS-BP神经网络的输入数据,在工区地质资料约束下根据测井数据获得裂缝发育水平评价指标,进而对研究区裂缝发育水平进行评价并划分等级。研究区碳酸盐岩储层裂缝发育水平检测结果表明,GWO-CS-BP算法能够综合各属性特点对研究区的裂缝发育水平特征进行二次误差控制,获得裂缝发育水平评价指标f s并将研究区裂缝发育水平划分为3个等级及4个裂缝存在区域。其中,当研究区裂缝发育水平参数的值适中时,即f s的值大于4.0且小于5.8时,C区域最有利于油气的聚集,高产井的分布数量较多。利用GWO-CS-BP算法对研究区的裂缝发育水平进行了精细评价,并得出裂隙发育水平参数f s,实现了GWO-CS算法改进的BP神经网络在裂缝检测中的有效应用。 展开更多
关键词 地震属性 裂缝检测 GWO-CS优化算法 BP神经网络 碳酸盐岩储层
下载PDF
基于改进YOLOv5的无人机影像道路裂缝检测方法
9
作者 朱伟刚 汪伦 +1 位作者 陈田 邹博文 《测绘通报》 CSCD 北大核心 2024年第3期173-178,共6页
道路裂缝的出现对道路使用寿命和人车安全带来明显影响,需及时检测出道路裂缝。针对无人机影像中裂缝目标小、图像背景复杂导致检测精度低等问题,本文以无人机采集裂缝图像作为研究数据,提出了一种改进YOLOv5模型的深度学习道路裂缝检... 道路裂缝的出现对道路使用寿命和人车安全带来明显影响,需及时检测出道路裂缝。针对无人机影像中裂缝目标小、图像背景复杂导致检测精度低等问题,本文以无人机采集裂缝图像作为研究数据,提出了一种改进YOLOv5模型的深度学习道路裂缝检测方法。在YOLOv5模型骨干网络中分别加入CBAM、SimAM、CA注意力机制,提高模型对裂缝的识别能力及检测精度,通过消融试验进行对比分析,同时在YOLOv5模型上融入自适应空间特征融合算法,改善裂缝特征提取能力。研究表明,改进后的YOLOv5网络模型相比于原模型,精度得到明显提高,均值平均精度(mAP)提升20.6%,在保证准确性的同时有效提高了检测精度,可为道路裂缝检测提供新的方法。 展开更多
关键词 裂缝检测 YOLOv5 注意力机制 自适应空间特征融合
下载PDF
基于机器视觉识别的桥梁裂缝检测算法研究
10
作者 程棋锋 周克民 +1 位作者 林晨 张爱乐 《水泥》 CAS 2024年第8期75-79,86,共6页
随着我国大型桥梁数量快速增多,虽然结合桥检车和桥检船的传统人工巡检为保障桥梁安全发挥了重要作用,但对于特殊结构桥梁,在某些情况下,存在检查盲区和检测速度偏低的弱点。因此本文针对普通无人机和爬壁机器人在桥梁检测中容易碰撞、... 随着我国大型桥梁数量快速增多,虽然结合桥检车和桥检船的传统人工巡检为保障桥梁安全发挥了重要作用,但对于特殊结构桥梁,在某些情况下,存在检查盲区和检测速度偏低的弱点。因此本文针对普通无人机和爬壁机器人在桥梁检测中容易碰撞、检测精度不足、效率较低的问题,提出基于机器视觉识别的桥梁裂缝检测算法系统。该系统采用基于Hessian矩阵的裂缝几何参数提取方法对采集的数据进行处理,实现了桥梁表观微小裂缝的高精度快速检测。对混凝土结构损伤评估和维护提供一定的理论和技术支撑。 展开更多
关键词 无人机巡检 视觉识别 桥梁裂缝检测 高精度
下载PDF
基于双重注意力U-Net的砌体结构震害裂缝检测
11
作者 赵平 靳丽艳 刘钰 《长沙理工大学学报(自然科学版)》 CAS 2024年第5期136-145,155,共11页
【目的】砌体结构震害裂缝严重影响结构安全。在震后应急响应阶段,对结构各部位进行裂缝检测是结构安全鉴定的重要依据。为提高检测效率,提出一种改进的多目标语义分割算法,即双重注意力UNet(dual attention U-Net,DA U-Net)。【方法】... 【目的】砌体结构震害裂缝严重影响结构安全。在震后应急响应阶段,对结构各部位进行裂缝检测是结构安全鉴定的重要依据。为提高检测效率,提出一种改进的多目标语义分割算法,即双重注意力UNet(dual attention U-Net,DA U-Net)。【方法】首先,为支持模型的训练,创建一个手工标记的数据集,并采用数据增强策略保证网络学习到更多的裂缝细节特征;其次,使用VGG16(visual geometry group 16-layer)网络替换U-Net主干特征提取网络,并且在跳层连接处嵌入卷积块状注意力模块和非局部注意力机制,有利于改善裂缝边缘分割不完整和全局特征信息利用不充分的问题,以及有效利用浅层特征信息来加强特征表示;最后,用亚像素卷积取代原上采样操作,补充低分辨率像素缺失的语义信息。【结果】改进DA U-Net网络在分类准确率和分割精度上均达到最佳表现。精度评价指标F_(1)分数(F_(1) score)指标E_(F_(1))、平均像素精度(mean pixel accuracy,MPA)指标E_(MPA)和平均交并比(mean intersection over union,MIOU)指标E_(MIOU)达到84.66%、91.57%和81.50%,相比U-Net网络的分割精度均提高5.00%以上。选择合适的主干网络能更好地捕捉和表征数据的复杂特征,同时对全局空间位置信息关注度也更高。【结论】改进算法可显著提升对裂缝识别和定位的准确性,以及对裂缝的整体形态、走向和交融情况的分割完整性,增强多组合裂缝分割精度,为震后砌体结构房屋安全鉴定提供一种有效的检测方法。 展开更多
关键词 砌体结构 地震 裂缝检测 改进U-Net 多目标分割 注意力机制
下载PDF
结合视觉Transformer和CNN的道路裂缝检测方法
12
作者 代少升 刘科生 余自安 《半导体光电》 CAS 北大核心 2024年第2期252-260,共9页
提出了一种结合视觉Transformer和CNN的道路裂缝检测方法。利用CNN来捕获局部的细节信息,同时利用视觉Transformer来捕获全局特征。通过设计的Fusion特征融合模块将两者提取的特征有机地结合在一起,从而解决了单独使用CNN或视觉Transfor... 提出了一种结合视觉Transformer和CNN的道路裂缝检测方法。利用CNN来捕获局部的细节信息,同时利用视觉Transformer来捕获全局特征。通过设计的Fusion特征融合模块将两者提取的特征有机地结合在一起,从而解决了单独使用CNN或视觉Transformer方法存在的局限。最终将结果传递至交互式解码器,生成道路裂缝的检测结果。实验结果表明,无论是在公开的数据集上还是在自建的数据集上,相较于单独使用CNN或视觉Transformer的方法,所提出的方法在道路裂缝检测任务中有更好的效果。 展开更多
关键词 道路裂缝检测 视觉Transformer和CNN 动态加权交叉特征融合
下载PDF
基于半监督学习的路面裂缝检测
13
作者 郭文浩 张德津 《交通科技与经济》 2024年第5期52-58,共7页
针对裂缝自动检测任务中难以获取大量精确标注样本数据的问题,提出LGS-Net(Local Global Similarity-Network)模型。LGS-Net的核心在于利用裂缝图像区域的语义相似性,有效结合少量已标注数据和大量未标注图像数据,通过半监督学习实现裂... 针对裂缝自动检测任务中难以获取大量精确标注样本数据的问题,提出LGS-Net(Local Global Similarity-Network)模型。LGS-Net的核心在于利用裂缝图像区域的语义相似性,有效结合少量已标注数据和大量未标注图像数据,通过半监督学习实现裂缝自动检测。为全面评估LGS-Net的性能,实验在GAPs384和Crack500数据集上进行验证。结果表明,在标注资源有限的情况下,LGS-Net能够实现高精度的裂缝检测。通过对检测结果的可视化分析,证明LGS-Net具有在复杂环境下有效识别裂缝的能力。LGS-Net利用路面裂缝图像的语义相似性特征进行检测,能为路面裂缝检测的工程应用提供技术支持。 展开更多
关键词 道路工程 裂缝检测 语义相似性 半监督学习 对比学习
下载PDF
基于CLAHE与U-Net模型的无人机桥梁裂缝检测方法
14
作者 林土淦 韦俊 +1 位作者 刘学军 何捷 《西部交通科技》 2024年第9期1-3,8,共4页
文章提出一种基于无人机与深度学习结合的桥梁表面裂缝分割方法。该方法采用无人机遍历桥梁各区域采集图像,通过网络传输到桥梁裂缝检测系统进行图像分析;采用U-Net深度学习网络对桥梁图像进行训练与特征提取,以提高系统准确率;针对图... 文章提出一种基于无人机与深度学习结合的桥梁表面裂缝分割方法。该方法采用无人机遍历桥梁各区域采集图像,通过网络传输到桥梁裂缝检测系统进行图像分析;采用U-Net深度学习网络对桥梁图像进行训练与特征提取,以提高系统准确率;针对图像存在光照不均匀、低对比度问题,采用对比度受限自适应直方图均衡化对数据进行处理以提高图像的边缘对比度,获得更细腻的裂缝特征。通过验证实验表明,该方法相比于原始的U-Net和YOLOv8-seg网络,其mAP分别提高了1.63%、2.01%。 展开更多
关键词 桥梁裂缝检测 图像分割 CLAHE U-Net模型
下载PDF
多阶段改进YOLOv5s算法在墙面施工中的裂缝检测效果分析
15
作者 吴红翠 邵佰春 《佳木斯大学学报(自然科学版)》 CAS 2024年第7期119-122,共4页
墙面裂缝如果不及时发现和处理,会引发一系列的安全问题,如墙体脱落、渗水等,进而会给人们的生命财产安全带来威胁。传统的检测方法难以实现精准定位,为此研究基于YOLOv5s算法并对其网络结构进行优化,以提高其计算能力和鲁棒性,最终对... 墙面裂缝如果不及时发现和处理,会引发一系列的安全问题,如墙体脱落、渗水等,进而会给人们的生命财产安全带来威胁。传统的检测方法难以实现精准定位,为此研究基于YOLOv5s算法并对其网络结构进行优化,以提高其计算能力和鲁棒性,最终对墙面裂缝检测系统进行优化设计。经实验验证,结果可知研究设计的多目标改进YOLOv5s算法可以对不同类型的墙面裂缝进行准确分类,其中对纵向裂缝的预测精度为97.2%,对横向裂缝的预测精度值为98.8%,对网状裂缝的预测精度值为96.4%。综上可知,优化设计的裂缝检测系统可以准确区分不同类型的裂缝,有利于提高墙面施工中的效率并降低检测和维修成本。 展开更多
关键词 墙面裂缝检测 多阶段方法 YOLOv5s 图像检测
下载PDF
大规格超薄建筑陶瓷砖纹饰裂缝检测方法研究
16
作者 高贇祺 《佛山陶瓷》 2024年第1期54-56,共3页
当前陶瓷砖纹饰裂缝检测方法仅从单一视觉角度采集陶瓷砖纹饰裂缝,导致检测出的纹饰裂缝宽度与实际差距过大。为此,本文主要研究大规格超薄建筑陶瓷砖纹饰裂缝检测方法:首先对大规格超薄建筑陶瓷砖纹饰进行多视图影像采集,通过图像获取... 当前陶瓷砖纹饰裂缝检测方法仅从单一视觉角度采集陶瓷砖纹饰裂缝,导致检测出的纹饰裂缝宽度与实际差距过大。为此,本文主要研究大规格超薄建筑陶瓷砖纹饰裂缝检测方法:首先对大规格超薄建筑陶瓷砖纹饰进行多视图影像采集,通过图像获取其像素解析度,进而建立裂缝识别模型,对裂缝进行定位并计算裂缝参数,实现裂缝检测。实验结果表明:与传统方法相比,所研究方法检测裂缝宽度精度为±0.3mm内,检测精度较高,具有实际的应用价值。 展开更多
关键词 大规格陶瓷砖 陶瓷砖纹饰 裂缝检测 纹饰裂缝检测 超薄建筑陶瓷砖
下载PDF
基于改进YOLOv4的混凝土裂缝检测方法 被引量:1
17
作者 谌婷婷 魏怡 《激光杂志》 CAS 北大核心 2024年第1期80-85,共6页
为了解决深度学习目标检测模型在混凝土裂缝应用上检测精度低、检测速度慢等问题,提出一种基于改进YOLOv4的混凝土裂缝检测方法。首先将YOLOv4的主干特征提取网络替换为轻量级网络Mobilenetv1,并且将YOLOv4加强特征提取网络中的普通标... 为了解决深度学习目标检测模型在混凝土裂缝应用上检测精度低、检测速度慢等问题,提出一种基于改进YOLOv4的混凝土裂缝检测方法。首先将YOLOv4的主干特征提取网络替换为轻量级网络Mobilenetv1,并且将YOLOv4加强特征提取网络中的普通标准卷积修改为深度可分离卷积;其次在PANet模块部分添加轻量级注意力模块CBAM(Convolutional Block Attention Module),在控制参数量的基础上提高裂缝目标检测的精度;最后用模拟人类视觉的RFB-s模块代替YOLOv4中的空间金字塔池化模块(Spatial Pyramid Pooling, SPP),扩大感受野,提高检测精度。实验结果表明,与传统YOLOv4相比,本模型的mAP增加三个百分点,参数量减少至14 M,检测速度可达42帧每秒。 展开更多
关键词 裂缝检测 YOLOv4 Mobilenetv1 注意力机制 RFB-s
下载PDF
基于位置信息和注意力机制的路面裂缝检测
18
作者 王安政 党建武 +1 位作者 岳彪 杨景玉 《计算机工程》 CAS CSCD 北大核心 2024年第4期303-312,共10页
路面裂缝是造成公路安全问题的主要因素。传统的裂缝检测通常以人工检测为主,存在效率低、不安全等问题,此外现有深度学习检测模型在面临阴影遮挡、背景复杂等干扰因素时会造成裂缝检测不完整。针对上述问题,提出一种基于位置信息和注... 路面裂缝是造成公路安全问题的主要因素。传统的裂缝检测通常以人工检测为主,存在效率低、不安全等问题,此外现有深度学习检测模型在面临阴影遮挡、背景复杂等干扰因素时会造成裂缝检测不完整。针对上述问题,提出一种基于位置信息和注意力机制的路面裂缝检测模型(PA-TransUNet)。首先,通过混合编码器接收输入图像,提取裂缝特征信息,引入查询项、键、值的位置信息,提升编码器Transformer中自注意力机制捕获裂缝形状和补偿特征信息丢失的能力。然后,输入裂缝特征到解码器进行上采样,设计一种基于注意力门控的解码模块(AGDM),AGDM通过抑制非裂缝区域来加强对裂缝区域的学习,提高裂缝检测的准确性和完整性。实验结果表明,PA-TransUNet模型在路面裂缝检测数据集(CFD)和Cracktree200这2个公开数据集上的F1值分别达到87.44%和82.58%。此外,为了进一步检验PA-TransUNet模型在实际工程中的裂缝检测能力,又在自制无人机裂缝(UAV Cracks)数据集上取得了88.68%的F1值,由此可见其能较好地满足实际工程中的裂缝检测需求。 展开更多
关键词 图像处理 路面裂缝检测 语义分割 位置信息 注意力机制
下载PDF
融合多级特征与注意力机制的路面裂缝检测
19
作者 苏天成 郑津津 +3 位作者 张广强 丰穗 张健康 周洪军 《传感器与微系统》 CSCD 北大核心 2024年第6期157-160,共4页
针对深度学习模型应用在道路裂缝检测时,存在裂缝提取不完整及检测速度慢等问题,提出了一种基于ResNet34骨干网络并结合通道注意力和空间注意力机制对特征图进行多级特征融合学习的算法。提出的算法由特征提取网络、多级特征融合模块构... 针对深度学习模型应用在道路裂缝检测时,存在裂缝提取不完整及检测速度慢等问题,提出了一种基于ResNet34骨干网络并结合通道注意力和空间注意力机制对特征图进行多级特征融合学习的算法。提出的算法由特征提取网络、多级特征融合模块构成,能够生成清晰准确的裂缝分割图像。其中,特征提取网络提取三原色(RGB)图像的分层级特征,多级特征融合模块学习ResNet34分层级特征信息,且各层的输出采用分层监督方式引导网络快速训练。为证明网络的有效性,在公开裂缝数据集上进行了测试,测试结果显示提出的算法在F1、平均交并比(MIoU)和帧率(FPS)上均超过了其他经典网络。 展开更多
关键词 多级特征融合 注意力机制 裂缝检测 图像分割
下载PDF
基于注意力机制和深层特征优化的混凝土路面裂缝检测
20
作者 夏淑芳 袁彬 瞿中 《计算机科学》 CSCD 北大核心 2024年第11期198-204,共7页
自动化裂缝检测是确保混凝土路面品质并提升道路养护效率的关键。针对现有方法在关注裂缝特征方面的不足以及深层特征图中裂缝细节信息易丢失的问题,文中提出一种融合注意力机制与深层特征优化策略的网络模型。该模型以VGG-16作为主干网... 自动化裂缝检测是确保混凝土路面品质并提升道路养护效率的关键。针对现有方法在关注裂缝特征方面的不足以及深层特征图中裂缝细节信息易丢失的问题,文中提出一种融合注意力机制与深层特征优化策略的网络模型。该模型以VGG-16作为主干网络,首先,在主干网络的中高层卷积后引入一种轻量级的置换注意力机制,旨在提高网络对裂缝特征的敏感性;其次,为了进一步增强对裂缝特征的捕捉能力,在每个阶段的侧边输出中嵌入相应的注意力模块;最后,提出一种空间可分离金字塔模块并设计了一种注意力融合模块,用以优化深层特征图,还原更多的裂缝细节。侧网络通过在多个层次上融合低层和高层特征,辅助生成最终的预测图像。该网络采用二分类交叉熵损失函数作为评价函数,经过训练的网络模型能够在复杂背景下准确地从输入的原始图像中识别裂缝位置。为验证所提方法的有效性,在DeepCrack,CFD和Crack500这3个公开数据集上将其与6种方法进行了比较,所提算法表现出卓越的性能,F-score值达到了87.19%。 展开更多
关键词 裂缝检测 注意力机制 深层特征优化 多特征融合 置换注意力 空间可分离金字塔
下载PDF
上一页 1 2 40 下一页 到第
使用帮助 返回顶部