Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investi...Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.展开更多
In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared ban...In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.展开更多
The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosp...The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosphere and may have a crucial impact on the air signals that are retrieved from ice cores. In the recent years, sunlit snow and ice have been demonstrated to be important NOx sources in the polar atmospheric boundary layer. This paper makes a thorough review on the release of NOx from snow and ice, including field observations and experimental evidences, release mechanisms and influential parameters that affect such a release process, polar NOx concentrations and fluxes, and environmental impacts of the chemical processes of NOx in the polar atmospheric boundary layer. In the Tibetan Plateau, the released NOx observed recently in the sunlit snow/ice-cover is 1-order magnitude more than that in polar regions, but further scientific research is still needed to reveal its impact on the atmospheric oxidizing capacity.展开更多
Seasonal ice cover is uncommon on Australian lakes. In the Snowy Mountains, there are five natural, seasonally ice-covered lakes including Lake Cootapatamba, the highest lake in Australia. Blue Lake is the only one of...Seasonal ice cover is uncommon on Australian lakes. In the Snowy Mountains, there are five natural, seasonally ice-covered lakes including Lake Cootapatamba, the highest lake in Australia. Blue Lake is the only one of the five lakes with sufficient volume to be relatively independent of short-term changes in ambient temperature, and therefore is the lake most likely to be of use in tracking long-term regional climate change. Ice forms on Blue Lake near the winter solstice and ice-breakup occurs from late September to November. Timing of breakup is related to spring temperature and, as such, mirrors the timing of general snow thaw in the mountains. The existence of historic photographs taken of the lake at about the time of ice breakup allows for the possibility of reconstructing a history of alpine climate and in 1905 ice breakup was probably as late as mid-December.展开更多
文摘Scattering of surface waves by the edge of a small undulation on a porous bed in an ocean of finite depth, where the free surface has an ice-cover being modelled as an elastic plate of very small thickness, is investigated within the framework of linearized water wave theory. The effect of surface tension at the surface below the ice-cover is neglected. There exists only one wave number propagating at just below the ice-cover. A perturbation analysis is employed to solve the boundary value problem governed by Laplace's equation by a method based on Green's integral theorem with the introduction of appropriate Green's function and thereby evaluating the reflection and transmission coefficients approximately up to first order. A patch of sinusoidal ripples is considered as an example and the related coefficients are determined.
基金Supported by the Antarctic Geography Information Acquisition and Environmental Change Research of China (No.14601402024-04-06).
文摘In polar regions, cloud and underlying ice-snow areas are difficult to distinguish in satellite images because of their high albedo in the visible band and low surface temperature of ice-snow areas in the infrared band. A cloud detection method over ice-snow covered areas in Antarctica is presented. On account of different texture features of cloud and ice-snow areas, five texture features are extracted based on GLCM. Nonlinear SVM is then used to obtain the optimal classification hyperplane from training data. The experiment results indicate that this algorithm performs well in cloud detection in Antarctica, especially for thin cirrus detection. Furthermore, when images are resampled to a quarter or 1/16 of the full size, cloud percentages are still at the same level, while the processing time decreases exponentially.
基金supported by the Fund of Polar Scientific Research(No.20080216) of State Ocean Administration, Chinaby Chinese Natural Science Foundation(No. 20407001,No.40701170)
文摘The exchanges of NOx between snow and air have significant impact on the atmospheric components and photochemical processes in the overlying boundary layer. Such exchanges increase the oxidizing capacity of the atmosphere and may have a crucial impact on the air signals that are retrieved from ice cores. In the recent years, sunlit snow and ice have been demonstrated to be important NOx sources in the polar atmospheric boundary layer. This paper makes a thorough review on the release of NOx from snow and ice, including field observations and experimental evidences, release mechanisms and influential parameters that affect such a release process, polar NOx concentrations and fluxes, and environmental impacts of the chemical processes of NOx in the polar atmospheric boundary layer. In the Tibetan Plateau, the released NOx observed recently in the sunlit snow/ice-cover is 1-order magnitude more than that in polar regions, but further scientific research is still needed to reveal its impact on the atmospheric oxidizing capacity.
文摘Seasonal ice cover is uncommon on Australian lakes. In the Snowy Mountains, there are five natural, seasonally ice-covered lakes including Lake Cootapatamba, the highest lake in Australia. Blue Lake is the only one of the five lakes with sufficient volume to be relatively independent of short-term changes in ambient temperature, and therefore is the lake most likely to be of use in tracking long-term regional climate change. Ice forms on Blue Lake near the winter solstice and ice-breakup occurs from late September to November. Timing of breakup is related to spring temperature and, as such, mirrors the timing of general snow thaw in the mountains. The existence of historic photographs taken of the lake at about the time of ice breakup allows for the possibility of reconstructing a history of alpine climate and in 1905 ice breakup was probably as late as mid-December.