针对输入的图像视觉信息不能在每一步解码过程中动态调整,同时为了提高图像语义描述模型的精度和泛化能力,提出了一种结合引导解码和视觉注意力机制的双层长短时记忆(long short term memory,LSTM)网络的图像语义描述模型。将提取到的...针对输入的图像视觉信息不能在每一步解码过程中动态调整,同时为了提高图像语义描述模型的精度和泛化能力,提出了一种结合引导解码和视觉注意力机制的双层长短时记忆(long short term memory,LSTM)网络的图像语义描述模型。将提取到的图像的视觉和目标特征通过一个引导网络建模后送入LSTM网络的每一时刻,实现端到端的训练过程;同时设计了基于图像通道特征的视觉注意力机制,提高了模型对图像细节部分的描述。利用MSCOCO和Flickr30k数据集对模型进行了训练和测试,结果显示模型性能在不同的评价指标上都得到了提升。展开更多
目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较...目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border detection)3种检测模型上,与原模型相比,对小型舰船的检测精度分别提高了3.5%、2.6%和2.9%,总体精度达到89.9%。在SSDD(SAR ship detection dataset)数据集上的总体精度达到95.9%,优于现有方法。结论本文通过改进骨干网络,使模型能够改变卷积核形状和大小,集中获取目标信息,抑制背景信息干扰,有效降低了SAR图像近岸复杂背景下小型舰船的误检漏检情况。展开更多
文摘针对输入的图像视觉信息不能在每一步解码过程中动态调整,同时为了提高图像语义描述模型的精度和泛化能力,提出了一种结合引导解码和视觉注意力机制的双层长短时记忆(long short term memory,LSTM)网络的图像语义描述模型。将提取到的图像的视觉和目标特征通过一个引导网络建模后送入LSTM网络的每一时刻,实现端到端的训练过程;同时设计了基于图像通道特征的视觉注意力机制,提高了模型对图像细节部分的描述。利用MSCOCO和Flickr30k数据集对模型进行了训练和测试,结果显示模型性能在不同的评价指标上都得到了提升。
文摘目的在近岸合成孔径雷达(synthetic aperture radar,SAR)图像舰船检测中,由于陆地建筑及岛屿等复杂背景的影响,小型舰船与周边相似建筑及岛屿容易混淆。现有方法通常使用固定大小的方形卷积核提取图像特征。但是小型舰船在图像中占比较小,且呈长条形倾斜分布。固定大小的方形卷积核引入了过多背景信息,对分类造成干扰。为此,本文针对SAR图像舰船目标提出一种基于可变形空洞卷积的骨干网络。方法首先用可变形空洞卷积核代替传统卷积核,使提取特征位置更贴合目标形状,强化对舰船目标本身区域和边缘特征的提取能力,减少背景信息提取。然后提出3通道混合注意力机制来加强局部细节信息提取,突出小型舰船与暗礁、岛屿等的差异性,提高模型细分类效果。结果在SAR图像舰船数据集HRSID(high-resolution SAR images dataset)上的实验结果表明,本文方法应用在Cascade-RCNN(cascade region convolutional neural network)、YOLOv4(you only look once v4)和BorderDet(border detection)3种检测模型上,与原模型相比,对小型舰船的检测精度分别提高了3.5%、2.6%和2.9%,总体精度达到89.9%。在SSDD(SAR ship detection dataset)数据集上的总体精度达到95.9%,优于现有方法。结论本文通过改进骨干网络,使模型能够改变卷积核形状和大小,集中获取目标信息,抑制背景信息干扰,有效降低了SAR图像近岸复杂背景下小型舰船的误检漏检情况。