We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured b...We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured by a fractional differential operator, which is defined in the Riemann-Liouville sense, and a nonlinear term in which different solution components are coupled. The analysis is based on the reduction of the given system to an equivalent system of integral equations. By means of the nonlinear alternative of Leray-Schauder,the existence of solutions of the factional differential system is obtained. The uniqueness is established by using the Banach contraction principle.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.11471274,11421110001 and 91130002)Natural Science Foundation of Guizhou Province(Grant No.LKS[2013]04)
文摘We study the boundary value problem of a coupled differential system of fractional order, and prove the existence and uniqueness of solutions to the considered problem. The underlying differential system is featured by a fractional differential operator, which is defined in the Riemann-Liouville sense, and a nonlinear term in which different solution components are coupled. The analysis is based on the reduction of the given system to an equivalent system of integral equations. By means of the nonlinear alternative of Leray-Schauder,the existence of solutions of the factional differential system is obtained. The uniqueness is established by using the Banach contraction principle.