针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨...针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。展开更多
绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解...绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解提取重构空间的最优特征序列,结合信息熵得出绕组松动的特征量——奇异谱熵,并作为诊断模型的输入,利用粒子群算法对多分类支持向量机进行参数优化。并将其测试结果与BP和PNN神经网络的诊断效果进行对比。实验结果证明,该方法能有效地判断绕组是否发生松动并正确识别绕组松动相,验证了上述方法的可行性和准确性。展开更多
文摘针对常规方法对于气体绝缘金属封闭开关设备(Gas Insulated Switchgear,GIS)机械缺陷的特征识别稳定性差、识别率低的问题,在图谱理论的基础上,提出一种基于图谱功率谱熵和最大均值差异(Maximum Mean Discrepancy,MMD)的GIS机械状态辨识方法。首先将采集得到的GIS振动信号转化为图信号,并利用图傅里叶变换技术变换至图谱域进行分析处理;然后提取图谱功率谱熵作为表征GIS不同状态的特征参数;最后利用MMD距离判别函数实现GIS不同工况下的状态辨识。实验结果表明:在噪声干扰的情况下,所提方法能够有效提取GIS不同状态下的特征参数,并成功区分出屏蔽罩松动及内部异物缺陷,状态辨识精度高达93.89%,较常规方法有明显提高。
文摘绕组压紧状态影响着变压器的机械性能和绝缘性能。为此,提出一种基于奇异谱熵和支持向量机的变压器绕组松动诊断及定位方法。首先进行110 k V变压器绕组松动实验并测取不同绕组状态下的振动信号,对信号进行时间序列重构,通过奇异值分解提取重构空间的最优特征序列,结合信息熵得出绕组松动的特征量——奇异谱熵,并作为诊断模型的输入,利用粒子群算法对多分类支持向量机进行参数优化。并将其测试结果与BP和PNN神经网络的诊断效果进行对比。实验结果证明,该方法能有效地判断绕组是否发生松动并正确识别绕组松动相,验证了上述方法的可行性和准确性。
基金国家重点基础研究发展计划项目(973计划)(2014CB-239506)国家电网公司科技项目(52020114026L)+1 种基金Project Supported by the National Basic Research Program(973 Program)(2014CB239506)Science and Technology Project of State Grid Corporation of China(52020114026L)