针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量...针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量预测方法。该方法通过迁移学习使用相似旧过程的数据辅助新过程建模,提高建模效率和模型预测精度;采用多源域适应的方式,通过引入多个源域,有效避免了负迁移;基于域适应思想减少源域和目标域之间的边缘概率分布差异,使得源域知识在目标域更好地泛化。最后,通过青霉素发酵过程的仿真案例验证了所提方法的有效性。展开更多
本文提出一种基于多尺度时空优化的空气质量预测方法(multi-scale spatial-temporal network for air quality prediction,MSSTN-AQP),结合空气质量系统中存在的长短期时间依赖关系和动态空间依赖性,提高长期空气质量预测的准确性。首先...本文提出一种基于多尺度时空优化的空气质量预测方法(multi-scale spatial-temporal network for air quality prediction,MSSTN-AQP),结合空气质量系统中存在的长短期时间依赖关系和动态空间依赖性,提高长期空气质量预测的准确性。首先,通过构建多尺度时空特征提取模块,从多源异构数据中提取时空特征。其次,构建动态空间特征提取模块。通过将图卷积网络与注意力机制进行有效结合,捕捉空气质量网络中的全局空间特征,用于对多种空间依赖关系的联合建模。最后,构建时间特征提取模块,对Transformer模型进行改进与优化。自适应时间Transformer模块主要用于模拟跨多个时间步长的双向时间依赖关系。此外,将上述时空特征提取模块进行有效集成化,构建端到端的空气质量预测模型。为了验证模型的有效性,在两个真实数据集中进行实验验证。实验结果表明,MSSTN-AQP在预测精度上更具优势,尤其是在长期的空气质量预测任务中优势更加明显。展开更多
针对传统空气质量预测模型收敛速度慢,精度低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和蜣螂优化算法(dung beetle optimizer,DBO)优化长短期记忆网络(long short term memory,LSTM)的预测模型。首先,针对...针对传统空气质量预测模型收敛速度慢,精度低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和蜣螂优化算法(dung beetle optimizer,DBO)优化长短期记忆网络(long short term memory,LSTM)的预测模型。首先,针对AQI原始数据具有大量噪声的问题,使用VMD方法对非平稳信号进行模态分解以降低噪声对预测结果的影响从而获得多个不同特征的模态分量;其次,针对LSTM靠人工经验调参存在一定局限性,利用DBO算法对LSTM模型参数进行优化;最后,对分解后的各个子序列使用LSTM模型预测,将各个子序列进行叠加得到最后的预测结果。实验结果表明,VMD对非平稳数据的分解有助于提高预测精度,VMD-DBO-LSTM模型的性能较其他模型均有不同程度的提高,该模型预测的均方根误差为4.73μg/m^(3),平均绝对误差为3.61μg/m^(3),拟合度达到了97.8%。展开更多
文摘针对间歇过程数据不足,单源域迁移存在模型偏移,跨域信息损失导致建模效果不佳、负迁移等问题,结合域适应学习和多源域学习方法的优势,提出一种基于多源域适应联合Y偏最小二乘(joint-Y partial least squares,JYPLS)迁移的间歇过程质量预测方法。该方法通过迁移学习使用相似旧过程的数据辅助新过程建模,提高建模效率和模型预测精度;采用多源域适应的方式,通过引入多个源域,有效避免了负迁移;基于域适应思想减少源域和目标域之间的边缘概率分布差异,使得源域知识在目标域更好地泛化。最后,通过青霉素发酵过程的仿真案例验证了所提方法的有效性。
文摘本文提出一种基于多尺度时空优化的空气质量预测方法(multi-scale spatial-temporal network for air quality prediction,MSSTN-AQP),结合空气质量系统中存在的长短期时间依赖关系和动态空间依赖性,提高长期空气质量预测的准确性。首先,通过构建多尺度时空特征提取模块,从多源异构数据中提取时空特征。其次,构建动态空间特征提取模块。通过将图卷积网络与注意力机制进行有效结合,捕捉空气质量网络中的全局空间特征,用于对多种空间依赖关系的联合建模。最后,构建时间特征提取模块,对Transformer模型进行改进与优化。自适应时间Transformer模块主要用于模拟跨多个时间步长的双向时间依赖关系。此外,将上述时空特征提取模块进行有效集成化,构建端到端的空气质量预测模型。为了验证模型的有效性,在两个真实数据集中进行实验验证。实验结果表明,MSSTN-AQP在预测精度上更具优势,尤其是在长期的空气质量预测任务中优势更加明显。
文摘针对传统空气质量预测模型收敛速度慢,精度低的问题,提出一种基于变分模态分解(variational mode decomposition,VMD)和蜣螂优化算法(dung beetle optimizer,DBO)优化长短期记忆网络(long short term memory,LSTM)的预测模型。首先,针对AQI原始数据具有大量噪声的问题,使用VMD方法对非平稳信号进行模态分解以降低噪声对预测结果的影响从而获得多个不同特征的模态分量;其次,针对LSTM靠人工经验调参存在一定局限性,利用DBO算法对LSTM模型参数进行优化;最后,对分解后的各个子序列使用LSTM模型预测,将各个子序列进行叠加得到最后的预测结果。实验结果表明,VMD对非平稳数据的分解有助于提高预测精度,VMD-DBO-LSTM模型的性能较其他模型均有不同程度的提高,该模型预测的均方根误差为4.73μg/m^(3),平均绝对误差为3.61μg/m^(3),拟合度达到了97.8%。