A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision oro...A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision orogen in genesis and belongs to the frontal zone of a huge thrust system developed during Yanshanian episode at the northern foot of the orogen. It is pointed out that thrusting had distorted the original depositional margin of the coal-forming region and some new coal-bearing blocks would be found out in the frontal sheets and under the undulate sole thrust.展开更多
The mineralogy and trace element contents in coals from the West Bokaro coalfield, which is the one of the biggest Gondwana coalfields of India, were studied to delineate enrichment of trace elements and their modes o...The mineralogy and trace element contents in coals from the West Bokaro coalfield, which is the one of the biggest Gondwana coalfields of India, were studied to delineate enrichment of trace elements and their modes of occur- rence. Elemental concentrations with reference to their crustal abundances indicated that coals are relatively enriched in As (4.4-15.5 mg/kg), Cd (0.3-3.0 mg/kg), Cu (28.0-68.1 mg/kg) and V (46.6-178.0 mg/kg); depleted in Co (10.8-28.4 mg/ kg), Mn (7.6-483.4 mg/kg), Ni (13.0-31.6 mg/kg), Cr (14.2-85.5 mg/kg) and Zn (5.25-70.4 mg/kg). The concentration of As, Cd, Co, Cu and V were higher than the average values of world and Indian coals. Mineralogical study carried out by X-ray diffraction shows that quartz and kaolinite occur as dominant mineral phases in this coal. Fourier transform infrared spectroscopy pattern suggests organic structures primarily containing aromatic nuclei, aliphatic side chain and some oxygen containing groups. The modes of occurrence of trace elements present in these coals have been determined through statistical approach. Both Cu and Cr are more closely associated with mineral matter, whereas Co is dominantly present with its organic form. The concentrations of Cd, Mn, Ni, Zn, As and V have apparently occur in both organic and inorganic constituents. This study would be helpful to assess the potential environmental impacts during mining and combustion of this coal.展开更多
基金This project was supported by the Coal Science Foundation of China
文摘A thrust and nappe tectonic zone with imbricate branch thrusts is developed along the southern margin of the coal-forming region of North China. This tectonic zone is tightly related to the Qinling-Dabie collision orogen in genesis and belongs to the frontal zone of a huge thrust system developed during Yanshanian episode at the northern foot of the orogen. It is pointed out that thrusting had distorted the original depositional margin of the coal-forming region and some new coal-bearing blocks would be found out in the frontal sheets and under the undulate sole thrust.
文摘The mineralogy and trace element contents in coals from the West Bokaro coalfield, which is the one of the biggest Gondwana coalfields of India, were studied to delineate enrichment of trace elements and their modes of occur- rence. Elemental concentrations with reference to their crustal abundances indicated that coals are relatively enriched in As (4.4-15.5 mg/kg), Cd (0.3-3.0 mg/kg), Cu (28.0-68.1 mg/kg) and V (46.6-178.0 mg/kg); depleted in Co (10.8-28.4 mg/ kg), Mn (7.6-483.4 mg/kg), Ni (13.0-31.6 mg/kg), Cr (14.2-85.5 mg/kg) and Zn (5.25-70.4 mg/kg). The concentration of As, Cd, Co, Cu and V were higher than the average values of world and Indian coals. Mineralogical study carried out by X-ray diffraction shows that quartz and kaolinite occur as dominant mineral phases in this coal. Fourier transform infrared spectroscopy pattern suggests organic structures primarily containing aromatic nuclei, aliphatic side chain and some oxygen containing groups. The modes of occurrence of trace elements present in these coals have been determined through statistical approach. Both Cu and Cr are more closely associated with mineral matter, whereas Co is dominantly present with its organic form. The concentrations of Cd, Mn, Ni, Zn, As and V have apparently occur in both organic and inorganic constituents. This study would be helpful to assess the potential environmental impacts during mining and combustion of this coal.