针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday...针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday波的形成机理,得到Faraday波的振动频率约为超声激励频率的1/2。液体惯性的存在,导致超声激励与液体表面波存在不断变化的相位差,相位差变化周期约等于2个超声激励周期。通过35 k Hz超声激励薄液膜实验,在薄液膜表面观察到排列整齐的Faraday波图案,通过测量Faraday波的波长,得出实验获得的Faraday波频率约为超声激励频率的1/2,与有限元仿真结果一致。展开更多
文摘针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday波的形成机理,得到Faraday波的振动频率约为超声激励频率的1/2。液体惯性的存在,导致超声激励与液体表面波存在不断变化的相位差,相位差变化周期约等于2个超声激励周期。通过35 k Hz超声激励薄液膜实验,在薄液膜表面观察到排列整齐的Faraday波图案,通过测量Faraday波的波长,得出实验获得的Faraday波频率约为超声激励频率的1/2,与有限元仿真结果一致。