负荷预测的准确率会影响电力生产和经济发展,根据目前广东电力现货市场的出清机制,超短期负荷预测的准确度对未来电力现货市场出清电价有着重大影响。文章采用数据横向纵向修正法对历史负荷数据进行修正,通过长短期记忆网络(Long Short ...负荷预测的准确率会影响电力生产和经济发展,根据目前广东电力现货市场的出清机制,超短期负荷预测的准确度对未来电力现货市场出清电价有着重大影响。文章采用数据横向纵向修正法对历史负荷数据进行修正,通过长短期记忆网络(Long Short Term Memory Network,LSTM)的预测方法,同时考虑现货市场实际运行时间间隔,对未来15min的负荷进行预测。根据应用情况表明,该方法简单实用,能满足现货市场实际运行出清时的负荷预测要求。展开更多
目前电力系统量测主要是广域测量系统(wide area measurement system,WAMS)和数据采集与监控系统(supervisory control and data acquisition,SCADA)混合量测并存。利用量测变换技术,将SCADA系统下支路功率量测和节点注入功率量测转换...目前电力系统量测主要是广域测量系统(wide area measurement system,WAMS)和数据采集与监控系统(supervisory control and data acquisition,SCADA)混合量测并存。利用量测变换技术,将SCADA系统下支路功率量测和节点注入功率量测转换为等效的电流相量量测,并与WAMS量测组成混合量测系统,在此基础上提出了直角坐标系下的线性动态状态估计算法。此外,采用高精度的母线超短期负荷预测并通过潮流计算得到预测值,实现了系统状态的实时跟踪预测。该算法减少了动态状态估计的计算时间,提高了动态状态估计的计算精度。采用IEEE14节点系统对提出的算法进行了验证。展开更多
文摘负荷预测的准确率会影响电力生产和经济发展,根据目前广东电力现货市场的出清机制,超短期负荷预测的准确度对未来电力现货市场出清电价有着重大影响。文章采用数据横向纵向修正法对历史负荷数据进行修正,通过长短期记忆网络(Long Short Term Memory Network,LSTM)的预测方法,同时考虑现货市场实际运行时间间隔,对未来15min的负荷进行预测。根据应用情况表明,该方法简单实用,能满足现货市场实际运行出清时的负荷预测要求。
文摘目前电力系统量测主要是广域测量系统(wide area measurement system,WAMS)和数据采集与监控系统(supervisory control and data acquisition,SCADA)混合量测并存。利用量测变换技术,将SCADA系统下支路功率量测和节点注入功率量测转换为等效的电流相量量测,并与WAMS量测组成混合量测系统,在此基础上提出了直角坐标系下的线性动态状态估计算法。此外,采用高精度的母线超短期负荷预测并通过潮流计算得到预测值,实现了系统状态的实时跟踪预测。该算法减少了动态状态估计的计算时间,提高了动态状态估计的计算精度。采用IEEE14节点系统对提出的算法进行了验证。