期刊文献+
共找到451篇文章
< 1 2 23 >
每页显示 20 50 100
融合CBAM注意力机制与可变形卷积的车道线检测
1
作者 胡丹丹 张忠婷 牛国臣 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第7期2150-2160,共11页
为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响... 为满足自动驾驶及汽车高级驾驶辅助系统(ADAS)对车道线检测准确性和实时性的要求,提出一种融合卷积块注意力机制(CBAM)与可变形卷积网络(DCN)的车道线检测方法CADCN。在特征提取模块中嵌入CBAM注意力机制,增强有用特征并抑制无用特征响应;引入可变形卷积替换常规卷积,用带偏移的采样学习车道线的几何形变,提高卷积核的建模能力;基于行锚分类思想,对行方向上的位置进行选择和分类分析,预测车道线的位置信息,提高车道线检测模型的实时性。在车道线公开数据集上对所提CADCN方法进行训练及验证,在满足实时性的情况下,CADCN方法在TuSimple数据集上准确率达到96.63%,在CULane数据集上综合评估指标F1平均值达到74.4%,验证了所提方法的有效性。 展开更多
关键词 车道线检测 特征提取 注意力机制 可变形卷积网络 行锚分类
下载PDF
LSTR算法的改进及在车道线检测中的应用
2
作者 张莹 张露露 +2 位作者 孙月 张东波 段万林 《小型微型计算机系统》 CSCD 北大核心 2024年第8期1863-1868,共6页
基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络... 基于Transformer的车道预测LSTR(Lane Shape Prediction with Transformers)算法在检测车道线时存在缺少捕捉局部特征的能力和多头注意力机制中头数多余的问题.本文提出了改进LSTR算法的车道线检测方法,首先在最后一个编码器中前馈网络的后面引入CBAM(Convolutional Block Attention Module)注意力机制模块,充分利用通道和空间上的信息,捕捉特征图中更多的细节;然后对解码器中的掩码多头注意力机制进行剪枝,使用掩码单头注意力机制来进行替换,以便更多关注前一时刻的车道线信息.改进后的LSTR算法在TuSimple数据集上准确度为96.31%,明显高于PolyLaneNet(Lane Estimation via Deep Polynomial Regression)等算法,在CULane数据集上比原始算法的F1评分上升了2.11%. 展开更多
关键词 车道线检测 深度学习 LSTR算法 TRANSFORMER 注意力机制
下载PDF
基于深度学习的低光环境车道线检测算法仿真
3
作者 张琰 赵庆 梁莉娟 《计算机仿真》 2024年第5期152-157,共6页
车道线检测研究是保证车辆自动驾驶安全的基础,但当下研究中存在低光环境车道线检测稳定性差,准确率低的问题,为此提出一种基于改进BFA-Retinex光照补偿深度学习算法,提高图像重点区域的光照水平,通过提取并融合车道线纹理与直方图特征... 车道线检测研究是保证车辆自动驾驶安全的基础,但当下研究中存在低光环境车道线检测稳定性差,准确率低的问题,为此提出一种基于改进BFA-Retinex光照补偿深度学习算法,提高图像重点区域的光照水平,通过提取并融合车道线纹理与直方图特征,构建出BRI-SVM低光车道线检测识别模型。模型包括图像补光模块、特征融合模块与车道线检测模块三个模块。BRI-SVM模型首先对Lll低光车道数据集进行灰度化与标准化处理,然后采用改进双边滤波算法提高图像光照基准;接着提取优化图像中的H与G特征,并将二者有机融合;最后基于数据驱动的方法,以深度学习与SVM算法为核心,构建出BRI-SVM模型,并采用交叉验证的方式提升模型性能。多类融合算法模型的仿真结果表明,在Lll低光数据集上,与其它模型相比,BRI-SVM模型的稳定性能与综合性能最高,特征值分别达到96.1%与96.3%,较传统算法分别平均提升了24.4%和23.8%;此外,所构建的模型具有较好的检测时效性与检测准确性,在所有模型评价中排名第2。综上所述,基于改进BFA-Retinex算法的低光照环境下车道线检测模型在具有最高鲁棒性与稳定性的同时,大幅度提高了车道线检测的准确性与时效性。 展开更多
关键词 光照补偿 特征融合 车道线检测
下载PDF
基于消失点引导透视变换的车道线检测算法
4
作者 姚善化 李士杰 王仲根 《安徽理工大学学报(自然科学版)》 CAS 2024年第4期11-19,共9页
目的为解决车道线的位置会随着车辆或相机的偏移发生变化而导致车道线检测准确率低和适应性差的问题,提出了一种基于消失点引导透视变换的车道线检测算法。方法首先,采用自适应消失点坐标引导更新透视变换矩阵,将车道图像转换为车道线... 目的为解决车道线的位置会随着车辆或相机的偏移发生变化而导致车道线检测准确率低和适应性差的问题,提出了一种基于消失点引导透视变换的车道线检测算法。方法首先,采用自适应消失点坐标引导更新透视变换矩阵,将车道图像转换为车道线保存完整的鸟瞰图;其次,将其颜色特征和边缘特征进行融合,得到精准的二值化图像;最后,根据直方图分析定位车道线的基点,采用滑动窗口搜索的方法提取候选的车道线像素,然后对搜索到的车道线像素进行多项式拟合。在不同的道路场景下测试算法的性能,并与其它同类算法进行对比分析。结果仿真结果表明,算法的准确率为94.12%,平均每帧耗时85.35ms,在检测精度和速度方面优于对比的算法。结论该算法能有效解决车道线位置的改变对车道线检测性能的影响,具有更高的准确率和较好的适应性,在阴影遮挡、车道破损、恶劣天气等复杂道路环境的检测下,表现出良好的鲁棒性。 展开更多
关键词 车道线检测 自适应消失点 透视变换 特征融合 滑动窗口搜索
下载PDF
循环多特征信息融合法:一种基于深度学习的车道线检测方法
5
作者 姚善化 赵帅 《科学技术与工程》 北大核心 2024年第10期4156-4164,共9页
车道线检测是辅助驾驶和自动驾驶的核心技术之一。为了进一步增强车道线特征的提取能力,提出了一种基于深度学习的循环多特征信息融合车道线识别算法。针对模型计算效率问题,该算法将车道线检测问题视为基于行选择单元格的分类问题;针... 车道线检测是辅助驾驶和自动驾驶的核心技术之一。为了进一步增强车道线特征的提取能力,提出了一种基于深度学习的循环多特征信息融合车道线识别算法。针对模型计算效率问题,该算法将车道线检测问题视为基于行选择单元格的分类问题;针对图像中车道信息聚合问题,提出了一种新的循环多特征信息聚合(recurrent multi-feature information aggregator,RMFA)方法,并将该方法与残差神经网络(residual neural network,ResNet)相结合提出融合上下文及多通道信息的车道线识别网络ResNet-RMFA。将该网络模型在Tusimple和CULane公开数据集上进行了性能测试,实验结果表明该模型单帧图像的推理时间可达4.8 ms,在Tusimple数据集上的精确度为96.07%,在CULane数据集上的F_(1)(IoU=0.5)评分为69.3%,达到了速度与精度的良好平衡。 展开更多
关键词 自动驾驶 车道线检测 深度学习 残差神经网络 信息聚合
下载PDF
融合坐标注意力机制的车道线检测算法研究
6
作者 丁承君 宣子颖 《激光杂志》 CAS 北大核心 2024年第9期47-52,共6页
车道线检测是智能驾驶中的一项关键技术,快速准确地检测出车道线位置对提升驾驶车辆的安全具有重要的意义。因此,提出改进的行方向位置分类车道线检测方法,在特征提取主干网络中融合了坐标注意力机制,增强特征图中的有效位置的权重,其... 车道线检测是智能驾驶中的一项关键技术,快速准确地检测出车道线位置对提升驾驶车辆的安全具有重要的意义。因此,提出改进的行方向位置分类车道线检测方法,在特征提取主干网络中融合了坐标注意力机制,增强特征图中的有效位置的权重,其次引入ELAN模块、MP下采样模块,提升模型特征提取的能力;在推理的时候利用结构重参数化的思想,将卷积和BN层融合,加快推理速度。为了验证改进模型的性能,将改进的模型在TuSimple和CULane两大经典车道线数据集上进行实验验证,检测的精度与原模型相比分别提升了0.09%和2.5%,验证了模型改进的有效性。 展开更多
关键词 深度学习 车道线检测 注意力机制 自动驾驶
下载PDF
基于注意力机制与线锚信息传递的车道线检测
7
作者 姜俊昭 彭彬 +1 位作者 杨文豪 徐业凯 《汽车工程学报》 2024年第5期812-820,共9页
车道线检测是自动驾驶领域的关键技术,目前仍面临较多挑战。车道线监督信号的稀疏性以及复杂场景下的遮挡、阴影等因素会影响检测的准确率与实时性。基于此,提出了一种融合CBAM注意力机制与线锚特征聚合模块的车道线检测模型,提出的算法... 车道线检测是自动驾驶领域的关键技术,目前仍面临较多挑战。车道线监督信号的稀疏性以及复杂场景下的遮挡、阴影等因素会影响检测的准确率与实时性。基于此,提出了一种融合CBAM注意力机制与线锚特征聚合模块的车道线检测模型,提出的算法在Tusimple和CULane数据集分别达到96.19%的准确率和76.24%的综合F1得分,通过实车测试表明,该算法检测帧率为67 fps,可以在复杂交通场景下进行实时检测,较好地解决了车道线遮挡问题。 展开更多
关键词 车道线检测 线 注意力机制 信息传递
下载PDF
基于OpenCV和YOLOv5的车道线检测与识别
8
作者 卢嫚 朱世博 《国外电子测量技术》 2024年第6期134-142,共9页
为更加快速、准确识别汽车行驶区域并区分车道,实现无人驾驶,提出一种结合视觉OpenCV算法和改进YOLOv5算法的目标检测跟踪模型进行车道线检测的方法。在图像预处理阶段,首先读取视频图像,把每一帧RGB图像转为灰度图,通过Canny算子对图... 为更加快速、准确识别汽车行驶区域并区分车道,实现无人驾驶,提出一种结合视觉OpenCV算法和改进YOLOv5算法的目标检测跟踪模型进行车道线检测的方法。在图像预处理阶段,首先读取视频图像,把每一帧RGB图像转为灰度图,通过Canny算子对图像的边缘轮廓进行提取,然后绘制车道线的掩码区域,并与边缘检测结合,采用ROI技术提取感兴趣区域,最后进行概率霍夫变换和最小二乘拟合,将得到的直线绘制到原图像中,最终对每一帧处理后的图像进行输出。目标识别模块采用卷积神经网络(convolutional neural network,CNN)深度学习方法及YOLOv5算法进行目标识别处理。实验结果表明,所提检测算法能够实现准确的车道线检测,实时性和准确性比传统算法高很多,且该方法具有良好的鲁棒性。 展开更多
关键词 车道线检测与识别 目标识别 OPENCV CANNY算子 YOLOv5
下载PDF
一种改进的嵌套残差网络车道线检测算法及其应用
9
作者 邓世权 石昀 《凯里学院学报》 2024年第3期63-70,共8页
车道线检测是自动驾驶中的核心问题之一,针对自动驾驶难以应对真实道路环境中复杂多变性问题,提出了一种基于嵌套结构的残差网络车道线检测模型.首先通过使用该模型对R2U-Net网络结构进行重构,然后利用构建后的深度学习网络对车道线数... 车道线检测是自动驾驶中的核心问题之一,针对自动驾驶难以应对真实道路环境中复杂多变性问题,提出了一种基于嵌套结构的残差网络车道线检测模型.首先通过使用该模型对R2U-Net网络结构进行重构,然后利用构建后的深度学习网络对车道线数据集进行学习和检测.该模型以图森公司发布的大规模车道线检测数据集为基础进行了大量的对比实验,结果表明,使用嵌套残差网络结构模型在车道线检测中取得了较高检测效果,检测准确率达到91%,与其他同类模型相比有显著优势. 展开更多
关键词 自动驾驶 循环卷积神经网络 残差网络 车道线检测 U-Net R2U-Net
下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:1
10
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
下载PDF
融合多尺度特征的残差车道线检测网络
11
作者 蒋源 张欢 +2 位作者 朱高峰 朱凤华 熊刚 《测绘通报》 CSCD 北大核心 2024年第10期71-76,共6页
针对车道线分布范围广、占像素少、特征不易提取的问题,本文构建了一种基于多尺度特征融合的残差车道线检测网络。首先,以残差双边网络为基础,采用双边特征聚合模块,利用语义分支的上下文信息指导同一阶段的细节分支的特征响应,并融合... 针对车道线分布范围广、占像素少、特征不易提取的问题,本文构建了一种基于多尺度特征融合的残差车道线检测网络。首先,以残差双边网络为基础,采用双边特征聚合模块,利用语义分支的上下文信息指导同一阶段的细节分支的特征响应,并融合两分支的信息;然后,针对不同阶段具有不同尺度,使用多尺度自适应特征对齐融合模块,构建采样前后偏移向量索引表,降低因简单采样而造成的细节信息缺失;最后,引入空间注意力机制,增强模型的长距离特征捕捉能力。试验结果表明,本文模型在3个公开数据集上均取得了良好效果,其中在CULane数据集上的准确度达77.89%,比目前主流算法高2%。 展开更多
关键词 车道线检测 双边分割网络 多尺度 注意力机制 端到端
下载PDF
基于非对称卷积的多车道线检测方法
12
作者 郭心悦 韩星宇 +2 位作者 习超 王辉 范自柱 《计算机工程与设计》 北大核心 2024年第2期428-435,共8页
针对车道检测的准确性和实时性之间不平衡的问题,构建一个基于Lanenet算法和图像增强技术的多车道线检测网络,旨在更全面地利用图像中的特征信息,提高检测精度和速度。使用多尺度Retinex算法对输入图像进行色彩增强、降噪等;设计采用一... 针对车道检测的准确性和实时性之间不平衡的问题,构建一个基于Lanenet算法和图像增强技术的多车道线检测网络,旨在更全面地利用图像中的特征信息,提高检测精度和速度。使用多尺度Retinex算法对输入图像进行色彩增强、降噪等;设计采用一种双边多尺度融合网络实现浅层特征与深层特征之间的信息交互,获取上下文语义。提出一个新的非对称卷积金字塔模块,将非对称卷积融合到不同扩张率的空洞卷积层中,提高网络的特征提取能力,减少计算量。实验结果表明,该方法与现有的深度学习算法相比,能够在遮挡和阴影条件下更有效地检测车道线,具有更高的精度,更低的误检率和漏检率。 展开更多
关键词 车道线检测 语义分割 图像增强 信息融合 池化金字塔 深度学习 非对称卷积
下载PDF
基于双分支分割网络的复杂环境车道线检测方法
13
作者 徐肖 赵会鹏 +2 位作者 范博文 段敏 李刚 《现代电子技术》 北大核心 2024年第20期87-94,共8页
对车道线实现准确检测是自动驾驶中的关键技术。针对现有的车道线检测方法对复杂工况下的车道线检测精度不足的问题,提出一个面向复杂场景下的车道线检测模型。基于LaneNet网络设计一种双分支分割网络,利用网络模型中的损失函数使图像... 对车道线实现准确检测是自动驾驶中的关键技术。针对现有的车道线检测方法对复杂工况下的车道线检测精度不足的问题,提出一个面向复杂场景下的车道线检测模型。基于LaneNet网络设计一种双分支分割网络,利用网络模型中的损失函数使图像像素点占比提高,实现网络参数的优化。通过编码器与解码器结构对车道线采样,实现语义分割与车道线像素点嵌入分割;并通过自适应DBSCAN聚类算法实现对邻域半径和最小样本个数两个参数的自主选择,引入H-Net网络中的图像逆透视变换与车道线拟合实现检测。最后,利用图森数据集对所设计模型进行验证。结果表明,所提出的车道线检测模型有较高的精度,能实现复杂场景下的车道线检测。 展开更多
关键词 车道线检测 双分支分割网络 自动驾驶 损失函数 网络参数优化 编码器 解码器
下载PDF
基于RepVGG网络的实时车道线检测方法
14
作者 蔡汶良 黄俊 《计算机科学》 CSCD 北大核心 2024年第7期236-243,共8页
针对现有车道线检测方法存在的检测速度慢、检测精度低的问题,将车道线检测视为分类问题,提出了基于RepVGG网络的实时车道线检测方法。在RepVGG网络中融合不同层级特征图,减少空间定位信息的损失,提高车道线的定位精度。采用曲线建模的... 针对现有车道线检测方法存在的检测速度慢、检测精度低的问题,将车道线检测视为分类问题,提出了基于RepVGG网络的实时车道线检测方法。在RepVGG网络中融合不同层级特征图,减少空间定位信息的损失,提高车道线的定位精度。采用曲线建模的后处理方法,从整体和局部两个角度修正车道线预测结果。挖掘车道线定位中的分布信息,提出了基于分布指导的车道线存在预测分支,直接从车道线定位分布中学习车道线的存在特征,在略微提升推理速度的同时进一步提升检测精度。在TuSimple和CULane数据集上的实验表明,该模型在检测速度和精度上取得了良好的平衡。在CULane数据集上,所提方法的推理速度为目前同类方法中检测速度最快的UFLDv2算法的1.13倍,同时F1分数从74.7%提高到77.1%,达到了实时检测任务的需求。 展开更多
关键词 计算机视觉 RepVGG 车道线检测 线拟合 特征融合 后处理
下载PDF
融合CAM和ASPP的车道线检测算法研究
15
作者 朱娟 朱国吕 岳晓峰 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第5期86-94,共9页
UFLD(ultra fast structure aware deep lane detection)是一种轻量化车道线检测模型,为提升模型的检测精度,对模型进行改进。引入CAM(channel attention mechanism)使模型能更关注携带重要车道线信息的特征通道和像素;为了感知车道线... UFLD(ultra fast structure aware deep lane detection)是一种轻量化车道线检测模型,为提升模型的检测精度,对模型进行改进。引入CAM(channel attention mechanism)使模型能更关注携带重要车道线信息的特征通道和像素;为了感知车道线的细节信息,引入ASPP(atrous spatial pyramid pooling)扩大卷积过程的感受野,提高模型分割精度;搭建引入CAM和ASPP后的改进模型,并在改进的模型上进行实验。实验结果表明:在TuSimple数据集上以ResNet18为主干网络的模型检测精度由95.81%提升至95.98%,以ResNet34为主干网络的模型检测精度由95.84%提升至96.12%;在CULane数据集上,无论是以ResNet18还是以ResNet34为主干网络模型,其平均精度均有不同程度的提高。 展开更多
关键词 车道线检测 CAM ASPP 融合算法
下载PDF
基于无监督图像增强的低光照车道线检测
16
作者 赵玖龙 陈紫强 +1 位作者 姜弘岳 张骞 《计算机仿真》 2024年第9期116-120,共5页
现存的车道线检测方法在光照良好条件下具有较好的检测性能,但在低光照条件下性能急剧下降。针对低光照场景下车道线特征不明显导致不易检的问题,在车道线检测算法的预处理阶段加入融合空洞卷积的ZERO-DCE网络,提出了一种基于无监督图... 现存的车道线检测方法在光照良好条件下具有较好的检测性能,但在低光照条件下性能急剧下降。针对低光照场景下车道线特征不明显导致不易检的问题,在车道线检测算法的预处理阶段加入融合空洞卷积的ZERO-DCE网络,提出了一种基于无监督图像增强网络的车道线检测方法。首先在ZERO-DCE网络中融入空洞卷积来提升目标信息的捕捉能力,结合车道线色彩属性采用两阶段图像融合方法提升低光照情况下车道线特征,然后利用UFAST网络进行车道线检测。在CULane数据集的进行性能分析测试,结果表明:文中算法相较于baseline算法,在正常光照环境下性能表现基本一致;在阴影环境和夜间环境下的F1值分别提升3.5和2.3。 展开更多
关键词 神经网络 图像增强 车道线检测
下载PDF
基于轻量化U^(2)-Net的车道线检测算法研究
17
作者 邓欢 王健 +3 位作者 吴孟军 杜若飞 费明哲 王云靖 《汽车工程师》 2024年第8期22-28,共7页
针对车道线遮挡、道路阴影等多车道驾驶环境下提取的车道线特征信息缺失造成预测车道线模糊、不连续等问题,提出一种基于轻量化U^(2)-Net的车道线检测算法。首先,以轻量化U^(2)-Net的残差U形模块(RSU)和多特征尺度融合获得全局信息丰富... 针对车道线遮挡、道路阴影等多车道驾驶环境下提取的车道线特征信息缺失造成预测车道线模糊、不连续等问题,提出一种基于轻量化U^(2)-Net的车道线检测算法。首先,以轻量化U^(2)-Net的残差U形模块(RSU)和多特征尺度融合获得全局信息丰富的车道线特征;其次,对车道线特征进行逐像素阈值判断,并选择最小二乘法结合感兴趣区域(ROI)中车道线簇进行车道线的拟合,实现多车道线检测并确认自车道线区域;最后,在图森(TuSimple)数据集上进行验证与分析。验证结果表明,所提出的车道线检测算法的平均准确率达到98.4%,相比于其他车道线检测网络,该算法的网络参数量较少,准确率较高。 展开更多
关键词 轻量化U^(2)-Net 残差U形模块 车道线检测 车道线
下载PDF
基于ARM嵌入式平台的车道线检测算法
18
作者 关恬恬 杨帆 《液晶与显示》 CAS CSCD 北大核心 2024年第4期543-552,共10页
针对现有车道线检测算法在实际应用中难以平衡检测精度和速度的问题,提出一种全新的基于ARM嵌入式平台的车道线检测算法。首先,设计一个轻量化语义分割网络,在优化SegNet结构的同时在网络第一层加入跳跃连接,并且在每两个卷积层后加入... 针对现有车道线检测算法在实际应用中难以平衡检测精度和速度的问题,提出一种全新的基于ARM嵌入式平台的车道线检测算法。首先,设计一个轻量化语义分割网络,在优化SegNet结构的同时在网络第一层加入跳跃连接,并且在每两个卷积层后加入通道注意力机制模块,在保证检测精度的同时提升检测速度。接着,构建卡尔曼滤波车道线跟踪模型,提高检测在视频流中的鲁棒性。然后,重构编码器,对模型轻量化处理,使用深度可分离卷积代替传统的卷积以减少计算成本,提升检测速度。最后,利用TensorRT加速推理,生成Trt模型,方便其部署在ARM嵌入式平台中实现实时车道线检测。在自行制作的Tusimeple扩充数据集上的实验结果表明,所提出的算法能够应对各种复杂交通场景,检测精度达到98.03%,优于其他算法,并且其检测速度达到了50 FSP,满足实时性检测要求。本算法在复杂交通场景下具有较高的鲁棒性和有较好的实时性,具有一定的理论价值和实际应用价值。 展开更多
关键词 车道线检测 语义分割 深度可分离卷积 TensorRT加速 ARM嵌入式平台
下载PDF
基于CNN和Transformer混合网络模型的车道线检测
19
作者 唐洪 邓锋 +2 位作者 张恺 聂学方 李光辉 《应用科学学报》 CAS CSCD 北大核心 2024年第5期871-883,共13页
车道线检测技术在自动驾驶系统中发挥着重要作用,目前基于深度学习的车道线检测方法通常在主干网络提取特征之后分别获取车道线关键点的置信度以及这些点相对车道线起始点的偏移。但由于车道线是细长结构,现有的主干网络无法有效提取这... 车道线检测技术在自动驾驶系统中发挥着重要作用,目前基于深度学习的车道线检测方法通常在主干网络提取特征之后分别获取车道线关键点的置信度以及这些点相对车道线起始点的偏移。但由于车道线是细长结构,现有的主干网络无法有效提取这种结构特征,偏移网络也难以回归车道线上关键点相对起始点的偏移。鉴于注意力机制在提取空间结构特征、表征长距离图像序列间依赖关系方面的优越性能,在基于点的车道线检测方法的基础上提出了一种基于卷积神经网络(convolutional neural network,CNN)和Transformer的混合网络(CNN-Transformer hybrid network,CTNet)模型,该模型通过特征金字塔和增强的坐标注意力机制提高特征的表征能力,使用基于视觉Transformer的偏移网络回归关键点的偏移量,因此,CTNet能够提取细长车道线特征、捕获长距离点间的偏移,有效提升车道线检测的精度。实验对比了CTNet和6种常用车道线检测算法在数据集TuSimple和CULane上的效果,在TuSimple上CTNet各项精度指标均优于现有方法,在CULane数据集的9种不同车道场景中,CTNet在6个场景中取得了最佳精度。 展开更多
关键词 车道线检测 视觉Transformer 坐标注意力 特征金字塔网络
下载PDF
基于行列锚点融合的车道线检测方法研究
20
作者 李燕辉 方中纯 李海荣 《现代电子技术》 北大核心 2024年第22期165-172,共8页
车道线检测是自动驾驶和高级驾驶辅助系统中的关键技术之一,对于车辆准确定位和识别道路信息非常重要。为了提高检测精度和效率,提出一种基于行列锚点融合的车道线检测方法。首先,使用主干网络ResNet18提取车道线特征锚点,将提取出来的... 车道线检测是自动驾驶和高级驾驶辅助系统中的关键技术之一,对于车辆准确定位和识别道路信息非常重要。为了提高检测精度和效率,提出一种基于行列锚点融合的车道线检测方法。首先,使用主干网络ResNet18提取车道线特征锚点,将提取出来的特征锚点进行解耦分类处理;然后对其特征锚点分别在行方向和列方向加入水平注意力机制和垂直注意力机制,进行通道维度信息和空间维度信息的特征融合,以解决全局关注计算成本高、局部关注限制交互领域的问题,与此同时,车道线检测无视觉问题也得到了极大的改善。在CULane和Tusimple数据集上进行了广泛的实验和测试,结果表明,所提方法在检测精度和效率方面表现出综合优势,取得了良好的检测效果。 展开更多
关键词 车道线检测 行列锚点融合 自动驾驶 ResNet18网络 特征提取 解耦
下载PDF
上一页 1 2 23 下一页 到第
使用帮助 返回顶部