期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于神经网络融合模型的铁路接触网异物智能检测
1
作者 郭昊 万天义 +2 位作者 于潇 李新凯 刘文栋 《铁路计算机应用》 2024年第7期1-6,共6页
针对影响铁路接触网正常运行的异物问题,提出了一种基于神经网络融合模型的铁路接触网异物智能检测模型。以Faster R-CNN框架为基础,增加特征金字塔结构以学习图像不同尺度的特征;针对不同异物类型,将其分为鸟巢和轻质漂浮物,并运用ResN... 针对影响铁路接触网正常运行的异物问题,提出了一种基于神经网络融合模型的铁路接触网异物智能检测模型。以Faster R-CNN框架为基础,增加特征金字塔结构以学习图像不同尺度的特征;针对不同异物类型,将其分为鸟巢和轻质漂浮物,并运用ResNet50和ResNet101作为骨架网络,分别针对具有单一特征的鸟巢和特征复杂多变的轻质漂浮物进行识别;融合2个网络的识别框,得到精确的识别结果。对比实验表明,该模型的检测结果优于常规目标检测方法,可有效降低铁路接触网异物检测的人工成本,为铁路接触网的稳定运营提供了可行的解决方案。 展开更多
关键词 深度学习 接触网 异物检测 神经网络融合模型 鸟巢 轻质漂浮物
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部