期刊文献+
共找到403篇文章
< 1 2 21 >
每页显示 20 50 100
阿尔茨海默病辅助诊断的多模态数据融合轻量级网络
1
作者 王光明 柏正尧 +1 位作者 宋帅 徐月娥 《浙江大学学报(工学版)》 北大核心 2025年第1期39-48,共10页
单模态阿尔茨海默病辅助诊断方法缺少专业标注的影像数据,特征提取不稳定且要求高计算能力,为此融合核磁成像、正电子发射断层扫描影像数据和精神认知评分数据,提出多模态轻量级阿尔茨海默病辅助诊断网络(LightMoDAD).在影像特征提取模... 单模态阿尔茨海默病辅助诊断方法缺少专业标注的影像数据,特征提取不稳定且要求高计算能力,为此融合核磁成像、正电子发射断层扫描影像数据和精神认知评分数据,提出多模态轻量级阿尔茨海默病辅助诊断网络(LightMoDAD).在影像特征提取模块中,去冗余卷积以提取局部特征,引入全局滤波用于提取全局特征,通过配准并相加实现多模态影像特征融合.在文本特征提取模块中,由可分离深度卷积提取精神认知评分数据特征与多模态影像特征融合,通过迁移学习增强特征判别性.采用多层感知器识别复杂的模式和特征,提高所提网络的分类准确率.在ADNI数据库中开展有效性验证实验,LightMoDAD的分类准确率、敏感性和特异性分别为0.980、0.985和0.975.实验结果表明,所提网络有助于提高医生诊断效率,具有移动端部署潜力. 展开更多
关键词 阿尔茨海默病 多模态数据 轻量级网络 融合算法 迁移学习
下载PDF
GhostConv轻量级网络设计及故障诊断研究
2
作者 赵志宏 李春秀 杨绍普 《振动工程学报》 EI CSCD 北大核心 2024年第1期182-190,共9页
提出一种GhostConv轻量级网络模型并将其用于故障诊断。GhostConv利用常规卷积生成一小部分特征图,然后在生成的特征图上进行多次特征提取来生成其余特征图,最大程度地节约了常规卷积中生成冗余特征图的成本,减少了模型参数,保证了模型... 提出一种GhostConv轻量级网络模型并将其用于故障诊断。GhostConv利用常规卷积生成一小部分特征图,然后在生成的特征图上进行多次特征提取来生成其余特征图,最大程度地节约了常规卷积中生成冗余特征图的成本,减少了模型参数,保证了模型的性能。采用连续小波变换对振动信号进行时频变换生成二维时频图,之后利用设计的GhostConv搭建轻量级网络模型进行故障诊断。采用凯斯西储大学轴承数据集进行验证,并与其他卷积结构网络模型进行参数量、计算量以及识别准确率的对比。实验结果表明,与其他模型相比,所使用的网络模型在参数量和计算量较少的条件下依旧有较高的识别精度,且具有较好的鲁棒性和泛化能力,具有一定的工程应用价值。 展开更多
关键词 故障诊断 滚动轴承 轻量级网络 GhostConv 时频图
下载PDF
基于轻量级网络的小目标检测算法 被引量:3
3
作者 关玉明 王肖霞 +2 位作者 杨风暴 吉琳娜 丁春山 《现代电子技术》 北大核心 2024年第1期44-50,共7页
针对YOLOv5算法在检测小目标时存在准确率较低的情况,提出旨在提高小目标检测准确率的轻量级网络KOS-YOLOv5算法。首先采用K-means++聚类技术选择一组合适的锚框尺寸作为模型的先验,对小目标实现更精确的锚框尺寸,使模型能适应不同大小... 针对YOLOv5算法在检测小目标时存在准确率较低的情况,提出旨在提高小目标检测准确率的轻量级网络KOS-YOLOv5算法。首先采用K-means++聚类技术选择一组合适的锚框尺寸作为模型的先验,对小目标实现更精确的锚框尺寸,使模型能适应不同大小的目标;其次利用简化正负样本分配策略(SimOTA)进行动态样本匹配,更好地优化损失函数;最后将空间上下文金字塔(SCP)模块集成到算法检测层中,促使骨干网络更加关注小目标的特征信息,用以增加目标特征提取能力,提高目标的检测准确率。结果表明,改进后的KOS-YOLOv5算法与传统的YOLOv5模型进行比较,算法在检测精确度(P)方面提高了4%,召回率(R)方面提高了2.4%,平均检测精度(mAP)提高了3.1%,损失函数值(Loss)降低了5%,最终检测精度为95.38%。 展开更多
关键词 小目标检测 轻量级网络 特征提取 优化损失函数 YOLOv5 K-means++
下载PDF
基于马尔可夫转移场和轻量级网络的非侵入式负荷识别
4
作者 张帅 程志友 +2 位作者 田甜 徐正林 杨猛 《电力系统保护与控制》 EI CSCD 北大核心 2024年第17期51-61,共11页
负荷识别是非侵入式负荷监测(non-intrusive loadmonitoring,NILM)的关键一步。针对目前识别方法存在网络参数量大、识别率低的局限性,提出了一种基于马尔可夫转移场(Markov transition field,MTF)和轻量级网络的非侵入式负荷识别方法... 负荷识别是非侵入式负荷监测(non-intrusive loadmonitoring,NILM)的关键一步。针对目前识别方法存在网络参数量大、识别率低的局限性,提出了一种基于马尔可夫转移场(Markov transition field,MTF)和轻量级网络的非侵入式负荷识别方法。首先,利用归一化后的电压电流计算马尔可夫状态转移矩阵,在时域上排列每个状态转移概率构建MTF。其次,对MTF降采样以适应神经网络的学习,利用伪彩色编码技术得到RGB彩色图像。最后,在轻量级网络Shuffle Net V2中加入SimAM无参注意力模块作为特征提取网络,以较少的参数量实现负荷分类识别。使用公共数据集PLAID和WHITED对所提方法进行实验,结果表明,SimAM-ShuffleNetV2在两个数据集的识别准确率分别达到了98.99%和99.22%,参数量分别为0.37 M和0.41 M,比现有的方法具有更高的识别准确率和更少的参数量,验证了所提方法的有效性和优越性。 展开更多
关键词 非侵入式负荷识别 数据图像化 马尔可夫转移场 SimAM无参注意力 轻量级网络
下载PDF
轻量级网络识别红外图像中电气设备及其热故障
5
作者 张惊雷 李婉欣 +1 位作者 赵俊亚 温显斌 《计算机应用与软件》 北大核心 2024年第12期43-48,76,共7页
提出一种适合边缘计算设备的轻量级卷积神经网络(LightweightES)用于识别热像中的电气设备及其异常发热故障。为达到减少模型参数的同时提升检测精度的目标,对经典SSD进行改造,利用MobileNetV3轻量级网络作为特征提取骨干网络,快速高效... 提出一种适合边缘计算设备的轻量级卷积神经网络(LightweightES)用于识别热像中的电气设备及其异常发热故障。为达到减少模型参数的同时提升检测精度的目标,对经典SSD进行改造,利用MobileNetV3轻量级网络作为特征提取骨干网络,快速高效地提取图像特征;引入高效通道注意模块ECA,提高网络的检测精度;采用软池化(SoftPool)方法以减少池化信息损失,提高网络的分类精度。建立并标注含10516幅电气设备红外图像的数据集,含电流互感器、避雷器、绝缘子、隔离开关、断路器、套管等6种户外变电站设备。实验结果表明:LightweightES算法mAP达93.8%,较SSD提高了7.5百分点,参数量仅为SSD的1/5,检测帧率达55 FPS,能够实时准确地识别电气设备及其局部温度异常故障,适用于算力有限的智能现场监测终端。 展开更多
关键词 电气设备红外图像 目标检测 轻量级网络 通道注意 池化
下载PDF
一种用于输电线路绝缘子多缺陷检测的轻量级网络
6
作者 文斌 胡一鸣 +2 位作者 彭顺 丁弈夫 胡晖 《无线电工程》 2024年第10期2469-2477,共9页
针对绝缘子多类型缺陷检测速度慢、检测精度低的问题,提出一种用于输电线路绝缘子多缺陷检测的轻量级网络(Multi-Defect Detection Network, MDDNet),该算法主要针对绝缘子电弧烧伤和绝缘子伞裙破损的多类型绝缘子缺陷联合检测。基于Gho... 针对绝缘子多类型缺陷检测速度慢、检测精度低的问题,提出一种用于输电线路绝缘子多缺陷检测的轻量级网络(Multi-Defect Detection Network, MDDNet),该算法主要针对绝缘子电弧烧伤和绝缘子伞裙破损的多类型绝缘子缺陷联合检测。基于Ghost-C2f模块构建GC-Darknet53特征提取网络,增强特征提取能力并较少特征冗余;引入三尺度融合(Tri-Fusion)机制构建新型TF-Neck颈部网络,充分融合深层语义信息与浅层的细粒度信息,提高小目标缺陷检测精度;选用结构相似性交并比(Structural Similarity Intersection over Union, SIoU)损失函数提高模型定位能力。实验结果表明,提出的MDDNet模型平均精度均值(mean Average Precision mAP)达到92.1%,与YOLOv5相比,在参数量减少了20%的情况下mAP提升了3.0%,与其他现有一阶段算法相比,MDDNet算法检测速度达到86.1帧/秒,能够在保证轻量化的同时提高检测精度,满足绝缘子多缺陷检测的应用需求。 展开更多
关键词 图像处理 绝缘子 缺陷检测 YOLOv5 轻量级网络
下载PDF
考虑边缘计算的轻量级网络硬件优化设计 被引量:1
7
作者 邹易奇 《无线互联科技》 2024年第3期81-83,共3页
随着移动互联网、物联网的蓬勃发展,大量智能终端设备产生了海量数据,这需要在网络边缘进行实时的智能分析和处理。因此,研究轻量级神经网络的硬件优化方案,以实现边缘智能成为当下的研究热点。文章阐述了基于模型压缩与量化、定点计算... 随着移动互联网、物联网的蓬勃发展,大量智能终端设备产生了海量数据,这需要在网络边缘进行实时的智能分析和处理。因此,研究轻量级神经网络的硬件优化方案,以实现边缘智能成为当下的研究热点。文章阐述了基于模型压缩与量化、定点计算替代浮点计算、数据流优化、存储优化与并行计算等方面的轻量级网络硬件设计与优化策略,在FPGA实现方面,采用流水线并行与BRAM利用提升了MobileNetV2的执行效率。结果表明,与原始模型相比,优化后的模型参数量、内存占用等资源利用指标显著降低,CPU利用率、推理速度等性能指标明显提升。实验研究验证了文章所提的各项优化方法,为将深度神经网络部署到边缘设备提供了参考。 展开更多
关键词 边缘计算 轻量级网络 模型压缩 硬件优化
下载PDF
GhostNet轻量级网络在糖尿病视网膜病变诊断中的应用价值
8
作者 朱小红 张云 +1 位作者 刘美玲 曹凯 《首都医科大学学报》 CAS 北大核心 2024年第4期678-685,共8页
目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的D... 目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的DR诊断模型的应用价值。方法收集大样本的眼底彩照29535张(含DR 9883张、正常眼底2000张、用于做鉴别诊断的其他致盲性眼底病17652张)。分别采用经典卷积神经网络DenseNet121和轻量级网络GhostNet建模,并借助迁移学习做模型训练。采用受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)、灵敏度、特异度、准确率评价模型性能。结果与基于DenseNet121的模型相比,基于GhostNet的模型对单张眼底照的诊断时间缩短了60.3%。在DR的诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.911、0.888、0.934、91.3%,基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.954、0.921、0.986、95.5%。在DR与其他眼底病的鉴别诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.862、0.856、0.901、87.8%;基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.899、0.871、0.935、90.2%。结论基于GhostNet轻量级神经网络构建的DR诊断模型和鉴别诊断模型,其诊断效率较经典模型DenseNet121有显著提升,并且模型兼具较高的准确率。对于社区医院等缺乏眼科医师且设备性能不高的基层医疗机构,可考虑应用该技术开展DR的初筛。 展开更多
关键词 糖尿病视网膜病变 轻量级神经网络模型 诊断 筛查 社区
下载PDF
基于轻量级网络自适应特征提取的番茄病害识别 被引量:7
9
作者 胡玲艳 周婷 +5 位作者 刘艳 许巍 盖荣丽 李晓梅 裴悦琨 汪祖民 《江苏农业学报》 CSCD 北大核心 2022年第3期696-705,共10页
为了实现番茄病害的精准识别,本研究提出一种轻量级网络自适应特征提取方法。该方法首先对图片进行正形处理,然后基于SqueezeNet模型构建轻量级网络模型GKFENet。GKFENet模型包含全局特征提取和关键特征提取2个模块,其中全局特征提取模... 为了实现番茄病害的精准识别,本研究提出一种轻量级网络自适应特征提取方法。该方法首先对图片进行正形处理,然后基于SqueezeNet模型构建轻量级网络模型GKFENet。GKFENet模型包含全局特征提取和关键特征提取2个模块,其中全局特征提取模块逐层提取番茄病害叶片的全局特征,关键特征提取模块通过学习评估出特征图各通道的重要程度,计算出权重值,最后将该值加权到原特征图上,从而实现病害关键特征的自适应提取。结果显示,正形机制有助于神经网络学习特征,本研究构建的GKFENet模型的平均识别准确率为97.90%,模型大小仅为2.64 MB,且在强噪声环境下,其识别准确率仍能保持在78.00%以上。GKFENet模型在训练过程中相对稳定,对8种番茄病害的识别准确率均超过96.00%。相比Bayes、KNN、LeNet、SqueezeNet、MobileNet模型,本研究构建的GKFENet模型的识别精度高,稳定性强且占用内存小,对于移动端未来的应用具有较高的实际价值。 展开更多
关键词 轻量级网络 正形机制 特征提取 番茄 病害识别
下载PDF
轻量级网络入侵检测系统——Snort的研究 被引量:6
10
作者 陶利民 张基温 《计算机应用研究》 CSCD 北大核心 2004年第4期106-108,134,共4页
简单阐述了入侵检测系统的基本概念、发展及分类,并从功能特点、工作原理和体系结构三个方面分析了Snort这个优秀的轻量级网络入侵检测系统。
关键词 计算机网络 网络安全 密码 信息安全 防火墙 轻量级网络入侵检测系统 SNORT
下载PDF
基于轻量级网络的钢铁表面缺陷分类 被引量:3
11
作者 史杨潇 章军 +1 位作者 陈鹏 王兵 《计算机应用》 CSCD 北大核心 2021年第6期1836-1841,共6页
缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网... 缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网络模型Mix-Fusion。首先,通过组卷积和通道洗牌两种操作,在保持精度的同时有效降低计算成本;其次,利用一个狭窄的特征映射对组间信息进行融合编码,并将生成的特征与原始网络结合,从而有效解决了"稀疏连接"卷积阻碍组间信息交换的问题;最后,用一种新型的混合卷积(Mix Conv)替代了传统的深度卷积(DWConv),以进一步提高模型的性能。在NEU-CLS数据集上的实验结果表明,Mix-Fusion网络在缺陷分类任务中的浮点运算次数和分类准确率分别为43.4 MFLOPs和98.61%。相较于Shuffle Net V2和Mobile Net V2网络,Mix-Fusion网络不仅降低了模型参数,压缩了模型大小,同时还得到了更好的分类精度。 展开更多
关键词 表面缺陷检测 缺陷分类 模型加速 深度学习 轻量级网络
下载PDF
基于轻量级网络的人脸检测及嵌入式实现 被引量:3
12
作者 张明 张芳慧 +3 位作者 宗佳平 宋治 岑翼刚 张琳娜 《图学学报》 CSCD 北大核心 2022年第2期239-246,共8页
尽管基于卷积神经网络(CNN)的人脸检测器在精度上已经有了很大提升,但所需的计算量和模型复杂度越来越高,如何在计算能力有限的嵌入式设备上应用人脸检测模型是一个很大的挑战。针对320×240分辨率输入图像的人脸检测在嵌入式系统... 尽管基于卷积神经网络(CNN)的人脸检测器在精度上已经有了很大提升,但所需的计算量和模型复杂度越来越高,如何在计算能力有限的嵌入式设备上应用人脸检测模型是一个很大的挑战。针对320×240分辨率输入图像的人脸检测在嵌入式系统上的应用问题,提出了一种基于轻量级网络的低分辨率人脸检测算法。该算法使用注意力机制、结合了Distance-IoU (DIoU)与非极大值抑制(NMS)、使用Mish激活函数,同时针对人脸特征比例设置合适的先验框,实现了精度和速度的平衡,并部署到嵌入式平台中。具体地,用深度可分离卷积替代普通卷积,并在卷积块后加入注意力模块(CBAM),使网络更关注待识别的目标物体;代替ReLU激活函数,采用了Mish激活函数来提高模型推理速度;通过结合DIoU与NMS,提高模型对小人脸的检测能力。实验在WIDERFACE数据集的结果证明,该方法不仅能实时高精度地进行人脸检测,而且在小分辨率输入上,精度高于传统算法。扩充数据集之后,模型在复杂光照下的泛化性得到提高。 展开更多
关键词 人脸检测 轻量级网络 注意力机制 激活函数 非极大值抑制
下载PDF
Snort-轻量级网络入侵检测系统
13
作者 乔芃喆 《郑州牧业工程高等专科学校学报》 2006年第2期34-36,共3页
1、Snort简介 Snort是一个轻量级的网络入侵检测软件,这里的“轻量级”的意思是占用的资源非常少,能运行在多种不同的操作系统中,它是基于libpcap库的网络数据包嗅探器和日志记录工具。Snort具有很好的扩展性和可移植性。它是一个用... 1、Snort简介 Snort是一个轻量级的网络入侵检测软件,这里的“轻量级”的意思是占用的资源非常少,能运行在多种不同的操作系统中,它是基于libpcap库的网络数据包嗅探器和日志记录工具。Snort具有很好的扩展性和可移植性。它是一个用C语言编写的开发源代码软件,符合GPL(GUN General Public License)的要求,任何组织和个人都可以自由使用,当前最新版本2.4。 展开更多
关键词 轻量级网络入侵检测系统 LIBPCAP库 入侵检测软件 SNORT PUBLIC 网络数据包 操作系统 日志记录 可移植性 最新版本
下载PDF
融合轻量级网络和双重注意力机制的煤块检测方法 被引量:11
14
作者 叶鸥 窦晓熠 +1 位作者 付燕 邓军 《工矿自动化》 北大核心 2021年第12期75-80,共6页
针对现有煤矿井下带式输送机上煤块检测方法存在检测精度低、检测速度慢等问题,提出了一种融合轻量级网络和双重注意力机制的改进YOLOv4模型,并将其应用于带式输送机煤块检测。改进YOLOv4模型采用K-means聚类算法重新聚类先验框,使先验... 针对现有煤矿井下带式输送机上煤块检测方法存在检测精度低、检测速度慢等问题,提出了一种融合轻量级网络和双重注意力机制的改进YOLOv4模型,并将其应用于带式输送机煤块检测。改进YOLOv4模型采用K-means聚类算法重新聚类先验框,使先验框更适应检测目标尺寸;通过引入MobileNet轻量级网络模型改进主干网络结构,以减少模型的参数量和计算量,提高检测速度;嵌入具有双重注意力机制的卷积块注意模块,用于提高模型对目标特征的敏感度,抑制干扰信息,提高目标检测精度。实验结果表明,改进YOLOv4模型能准确检测出不同尺寸的煤块;相较于YOLOv4模型,改进YOLOv4模型权重文件减少了36.46%,精确率提高了2.16%,召回率提高了20.4%,平均精度均值提高了14.37%,漏检率降低了16%,检测速度提升了19帧/s,处理单张图像耗时减少了1.31 s,提高了煤块检测精度和检测速度。 展开更多
关键词 带式输送机 煤块检测 目标检测 轻量级网络 双重注意力机制 YOLOv4
下载PDF
基于纹理特征增强和轻量级网络的人脸防伪算法 被引量:5
15
作者 沈超 何希平 《计算机科学》 CSCD 北大核心 2022年第S01期390-396,共7页
人脸防伪检测是人脸识别中较为重要的一环,对现实中的相关行业,如身份验证、安全密钥、金融支付等有着重大的意义。目前主流的基于深度学习的人脸防伪算法已经取得较为先进的效果,但仍存在部分问题,如模型参数过多,增加了实际部署的难度... 人脸防伪检测是人脸识别中较为重要的一环,对现实中的相关行业,如身份验证、安全密钥、金融支付等有着重大的意义。目前主流的基于深度学习的人脸防伪算法已经取得较为先进的效果,但仍存在部分问题,如模型参数过多,增加了实际部署的难度,而轻量级的网络结构的泛化性能并不好等。针对相关人脸防伪算法泛化能力差、参数量过大等问题,提出了一种人脸纹理信息增强方法和基于改进FeatherNet网络的人脸防伪检测算法,通过对真伪人脸信息纹理差异特征的筛选并增强作为骨干网络的输入,在骨干网络的设计上引入了DropBlock模块以及加入了多通道注意力特征图分支,在保持速度的前提下实现了泛化性能的增强。所提算法在库内测试和跨库测试上均显示出了良好的性能提升。 展开更多
关键词 人脸防伪 纹理特征增强 多通道注意力 轻量级网络
下载PDF
基于区域分块和轻量级网络的人脸反欺骗方法 被引量:1
16
作者 贺丹 何希平 +2 位作者 李悦 袁锐 牛园园 《计算机应用》 CSCD 北大核心 2022年第12期3708-3714,共7页
如何高效地辨别各种被攻击的人脸是人脸识别过程中迫切需要解决的问题。基于深度学习的人脸反欺骗方法在有着高性能的同时,也带来了庞大的参数量和计算量,使其无法部署在移动或嵌入式设备中。针对以上问题,提出了一种基于区域分块和轻... 如何高效地辨别各种被攻击的人脸是人脸识别过程中迫切需要解决的问题。基于深度学习的人脸反欺骗方法在有着高性能的同时,也带来了庞大的参数量和计算量,使其无法部署在移动或嵌入式设备中。针对以上问题,提出了一种基于区域分块和轻量级网络的人脸反欺骗方法。首先,对训练样本进行随机区域分块;然后,设计了一种基于注意力机制的轻量级网络用于特征提取和图像分类;最后,为了提高测试准确率,对测试样本进行基于区域分块的数据扩增。实验结果表明,所提模型在CASIA-FASD和REPLAY-ATTACK数据集上达到了100%的准确率;在CASIA-SURF数据集的Depth模态上获得了99.49%的准确率和0.4580%的平均分类错误率(ACER),远优于ResNet、ShuffleNet等卷积神经网络,且该模型的参数量也仅有0.2582 MB。在实际应用中,端到端的轻量级网络结构使所提模型更方便部署在移动设备上来进行实时的人脸反欺骗检测。 展开更多
关键词 人脸反欺骗 区域分块 中心差分卷积 注意力机制 轻量级网络 卷积神经网络
下载PDF
基于轻量级网络的PCB元器件检测 被引量:1
17
作者 产世兵 刘宁钟 沈家全 《计算机技术与发展》 2020年第10期14-20,共7页
随着电子工业的迅速发展,电路板元器件的缺陷检测愈加重要。传统的人工检测方法效率很低,而且容易因为视觉疲劳造成错误检测,可靠性低,速度慢。目前广泛应用的自动光学检测设备,缺点明显,速率低,对直插元器件的检测精度低,无法适应电路... 随着电子工业的迅速发展,电路板元器件的缺陷检测愈加重要。传统的人工检测方法效率很低,而且容易因为视觉疲劳造成错误检测,可靠性低,速度慢。目前广泛应用的自动光学检测设备,缺点明显,速率低,对直插元器件的检测精度低,无法适应电路板元器件的多样性检测。随着对卷积神经网络的深度研究,神经网络在目标检测方面已经达到了优秀的效果,但是常见的网络对PCB元器件中的小目标以及实时检测并不理想。对基于Faster RCNN和PeleeNet网络的研究,实现了轻量级小目标检测模型;通过先验知识修改了RPN网络的包围框大小;针对PCB元器件样本的小目标样本少的问题,利用了小目标样本增广技术,提高了整体的检测速度以及精度。通过消融实验体现了改进部分对PCB元器件实时检测的重要性;通过对比实验,该方法在保证检测精确度降低很小的同时,缩小了模型的大小,在数据集上具有0.858的mAP,检测时间为0.034 s,相比Faster RCNN(基础网络为VGG16或ResNet50)的检测速度有了不错的提高。 展开更多
关键词 PCB元器件 卷积神经网络 轻量级网络 小目标检测 实时检测
下载PDF
基于改进MobileNetV2轻量级网络的步态识别研究 被引量:2
18
作者 卢兆一 赵鑫泽 代雪晶 《信息记录材料》 2023年第6期245-248,共4页
为了解决目前深度学习中大型网络计算复杂、难以在嵌入式等移动设备进行部署及应用的问题,在MobileNet V2网络的基础上,提出一种改进型轻量级网络进行步态识别。将CASIA-B数据集进行预处理生成步态能量图,通过调整网络中深度可分离卷积... 为了解决目前深度学习中大型网络计算复杂、难以在嵌入式等移动设备进行部署及应用的问题,在MobileNet V2网络的基础上,提出一种改进型轻量级网络进行步态识别。将CASIA-B数据集进行预处理生成步态能量图,通过调整网络中深度可分离卷积模块,使用H-swish激活函数并引入SE注意力机制(squeeze-and-excitation networks),对行人步态进行分组实验。实验结果表明,改进后的网络模型能有效进行数据集的分类识别,模型大小为12.55 M,在测试集上的平均识别准确率达到94.27%,比原始网络提高了2.29%。同时,在精度和复杂度上获得了较好的平衡,为步态识别方法在移动端等资源受限的设备上提供思路和参考。 展开更多
关键词 深度学习 步态识别 MobileNet V2轻量级网络 步态能量图
下载PDF
基于边端轻量级网络的电力仪表设备检测方法 被引量:14
19
作者 崔昊杨 张雨阁 +3 位作者 张驯 陈磊 江超 孙益辉 《电网技术》 EI CSCD 北大核心 2022年第3期1186-1193,共8页
电力仪表设备边端智能化检测,是构建数字化变电站的必要环节。在利用移动边端视觉设备检测电力仪表时,边端算力难以实现对复杂环境下的小尺度、高似然目标图像的快速检测,为此,提出一种基于轻量级EF-YOLOv4网络的电力仪表图像目标检测... 电力仪表设备边端智能化检测,是构建数字化变电站的必要环节。在利用移动边端视觉设备检测电力仪表时,边端算力难以实现对复杂环境下的小尺度、高似然目标图像的快速检测,为此,提出一种基于轻量级EF-YOLOv4网络的电力仪表图像目标检测方法。通过改进模型的主干特征网络,利用深度可分离卷积(depthwise separable convolutions,DSC)计算方法提取仪表多属性特征,同时降低模型计算复杂度,提高检测速度;改进特征融合结构,增加具有高分辨率以及颜色、纹理等仪表信息的浅层特征层,提升模型对小尺度仪表目标的注意力;融入最近邻快速特征匹配(fast library for approximate nearest neighbors,FLANN)方法,通过单位符号特征细粒度检测仪表目标。利用迁移学习参数共享机制调整模型权重,使模型快速适应于电力仪表小样本数据集。最后构建电力仪表图像测试集对模型进行验证。实验结果表明,相比于传统目标检测方法,所提方法对于电能表、电压表等多尺度、细粒度仪表设备图像的目标检测保持了较高的精确度与速度。可为电力仪表的可视化、信息化与智能化提供可行的技术方案及借鉴。 展开更多
关键词 电力仪表设备 目标定位与识别 轻量级网络 迁移学习
下载PDF
一种轻量级网络模型的多尺度热红外行人检测方法
20
作者 刘强 姚小良 +4 位作者 尤帅 梅超君 刘尚东 季一木 亓晋 《南京邮电大学学报(自然科学版)》 北大核心 2022年第5期74-82,共9页
现有热红外行人检测算法存在网络参数众多、计算量大和小目标检测效果不佳的问题,针对这些问题,提出了一种轻量级行人目标检测算法。首先,该算法利用轻量级网络Resnext50作为骨干网络,实现检测网络的参数削减以及初始特征提取。其次,在... 现有热红外行人检测算法存在网络参数众多、计算量大和小目标检测效果不佳的问题,针对这些问题,提出了一种轻量级行人目标检测算法。首先,该算法利用轻量级网络Resnext50作为骨干网络,实现检测网络的参数削减以及初始特征提取。其次,在模型中引入特征金字塔模块实现多尺度语义信息融合,并结合多尺度训练策略有效地提高了多尺度目标的检测效果。最后,在数据预处理部分引入图像原色填充策略,该策略有效地防止图像变换尺寸过程中出现的目标失真情况。在自建数据集和公开数据集上实验结果表明,此方法在速度和精度上均取得较好的性能,在自建数据集上mAP达到94.49%,比原SSD高出0.53%,而参数量少了近39%。 展开更多
关键词 热成像红外行人检测 轻量级网络 特征金字塔 多尺度训练
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部