目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的D...目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的DR诊断模型的应用价值。方法收集大样本的眼底彩照29535张(含DR 9883张、正常眼底2000张、用于做鉴别诊断的其他致盲性眼底病17652张)。分别采用经典卷积神经网络DenseNet121和轻量级网络GhostNet建模,并借助迁移学习做模型训练。采用受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)、灵敏度、特异度、准确率评价模型性能。结果与基于DenseNet121的模型相比,基于GhostNet的模型对单张眼底照的诊断时间缩短了60.3%。在DR的诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.911、0.888、0.934、91.3%,基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.954、0.921、0.986、95.5%。在DR与其他眼底病的鉴别诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.862、0.856、0.901、87.8%;基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.899、0.871、0.935、90.2%。结论基于GhostNet轻量级神经网络构建的DR诊断模型和鉴别诊断模型,其诊断效率较经典模型DenseNet121有显著提升,并且模型兼具较高的准确率。对于社区医院等缺乏眼科医师且设备性能不高的基层医疗机构,可考虑应用该技术开展DR的初筛。展开更多
缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网...缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网络模型Mix-Fusion。首先,通过组卷积和通道洗牌两种操作,在保持精度的同时有效降低计算成本;其次,利用一个狭窄的特征映射对组间信息进行融合编码,并将生成的特征与原始网络结合,从而有效解决了"稀疏连接"卷积阻碍组间信息交换的问题;最后,用一种新型的混合卷积(Mix Conv)替代了传统的深度卷积(DWConv),以进一步提高模型的性能。在NEU-CLS数据集上的实验结果表明,Mix-Fusion网络在缺陷分类任务中的浮点运算次数和分类准确率分别为43.4 MFLOPs和98.61%。相较于Shuffle Net V2和Mobile Net V2网络,Mix-Fusion网络不仅降低了模型参数,压缩了模型大小,同时还得到了更好的分类精度。展开更多
1、Snort简介
Snort是一个轻量级的网络入侵检测软件,这里的“轻量级”的意思是占用的资源非常少,能运行在多种不同的操作系统中,它是基于libpcap库的网络数据包嗅探器和日志记录工具。Snort具有很好的扩展性和可移植性。它是一个用...1、Snort简介
Snort是一个轻量级的网络入侵检测软件,这里的“轻量级”的意思是占用的资源非常少,能运行在多种不同的操作系统中,它是基于libpcap库的网络数据包嗅探器和日志记录工具。Snort具有很好的扩展性和可移植性。它是一个用C语言编写的开发源代码软件,符合GPL(GUN General Public License)的要求,任何组织和个人都可以自由使用,当前最新版本2.4。展开更多
文摘目的基于眼底彩照,分别应用经典卷积神经网络DenseNet121和轻量级网络GhostNet训练糖尿病视网膜病变(diabetic retinopathy,DR)的诊断模型(将DR和正常眼底做区分)和鉴别诊断(将DR和其他眼底病做区分)模型,评价基于轻量级网络GhostNet的DR诊断模型的应用价值。方法收集大样本的眼底彩照29535张(含DR 9883张、正常眼底2000张、用于做鉴别诊断的其他致盲性眼底病17652张)。分别采用经典卷积神经网络DenseNet121和轻量级网络GhostNet建模,并借助迁移学习做模型训练。采用受试者工作特征(receiver operating characteristic,ROC)曲线及其曲线下面积(area under the curve,AUC)、灵敏度、特异度、准确率评价模型性能。结果与基于DenseNet121的模型相比,基于GhostNet的模型对单张眼底照的诊断时间缩短了60.3%。在DR的诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.911、0.888、0.934、91.3%,基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.954、0.921、0.986、95.5%。在DR与其他眼底病的鉴别诊断方面,基于GhostNet的模型的AUC值、灵敏度、特异度、准确率分别为0.862、0.856、0.901、87.8%;基于DenseNet121的模型的AUC值、灵敏度、特异度、准确率分别为0.899、0.871、0.935、90.2%。结论基于GhostNet轻量级神经网络构建的DR诊断模型和鉴别诊断模型,其诊断效率较经典模型DenseNet121有显著提升,并且模型兼具较高的准确率。对于社区医院等缺乏眼科医师且设备性能不高的基层医疗机构,可考虑应用该技术开展DR的初筛。
文摘缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网络模型Mix-Fusion。首先,通过组卷积和通道洗牌两种操作,在保持精度的同时有效降低计算成本;其次,利用一个狭窄的特征映射对组间信息进行融合编码,并将生成的特征与原始网络结合,从而有效解决了"稀疏连接"卷积阻碍组间信息交换的问题;最后,用一种新型的混合卷积(Mix Conv)替代了传统的深度卷积(DWConv),以进一步提高模型的性能。在NEU-CLS数据集上的实验结果表明,Mix-Fusion网络在缺陷分类任务中的浮点运算次数和分类准确率分别为43.4 MFLOPs和98.61%。相较于Shuffle Net V2和Mobile Net V2网络,Mix-Fusion网络不仅降低了模型参数,压缩了模型大小,同时还得到了更好的分类精度。
文摘1、Snort简介
Snort是一个轻量级的网络入侵检测软件,这里的“轻量级”的意思是占用的资源非常少,能运行在多种不同的操作系统中,它是基于libpcap库的网络数据包嗅探器和日志记录工具。Snort具有很好的扩展性和可移植性。它是一个用C语言编写的开发源代码软件,符合GPL(GUN General Public License)的要求,任何组织和个人都可以自由使用,当前最新版本2.4。