在OFDM协作双向中继网络中,当多个用户对借助AF(amplify and forward)双向中继相互通信时,用户对之间的公平性与系统总速率不能同时兼顾.该文提出一种用户对速率成比例性公平,并与系统总速率折中的次优资源分配策略.该策略以最大化双向...在OFDM协作双向中继网络中,当多个用户对借助AF(amplify and forward)双向中继相互通信时,用户对之间的公平性与系统总速率不能同时兼顾.该文提出一种用户对速率成比例性公平,并与系统总速率折中的次优资源分配策略.该策略以最大化双向中继系统总速率为目标,在总功率及用户对的速率成比例约束下分两步进行.首先在每个子载波等功率假设条件下进行用户对速率成比例公平的子载波优化,使系统总速率得以提升.然后在保证公平性前提下采用一种迭代的功率分配方法将总功率分配到各个子载波,使系统总速率再次得到提升.仿真结果表明,所提出的策略在保证用户对速率成一定比例的前提下有效地提高了系统总速率.展开更多
Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrow...Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.展开更多
In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of ...In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.展开更多
We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing ...We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.展开更多
Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission...Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission capacity requirements in wireless networks,which consider both the channel state information(CSI) and the capacity requirements of each user by setting appropriate utility functions.Simulation results show that with considerable lower computational complexity,the first utility-optimization algorithm can meet the system capacity requirements of each user effectively.However,the rate-sum capacity performance is poor.Furthermore,the second proposed utility-optimization algorithm can contribute a better trade-off between system rate-sum capacity requirement and the capacity requirements of each user by introducing the signal to noise ratio(SNR) information to the utility function based on the first utility-optimization algorithm,which can improve the user requirements processing capability as well as achieve a better sum-rate capacity.展开更多
Multi-hop communications are becoming more and more important due to its flexibility and potential to improve communication coverage and quality. In this paper, we discuss the robust transceiver optimization for multi...Multi-hop communications are becoming more and more important due to its flexibility and potential to improve communication coverage and quality. In this paper, we discuss the robust transceiver optimization for multi-hop amplify-and-forward multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) systems. In general, we consider a three-dimensional robust beamforming design, i.e.,frequency, spatial and relay domains. With inevitable channel estimation errors, in our work both weighted mean square error(MSE) minimization and minimizing maximum MSE are adopted as the performance metrics to design robust transceivers. Following the Bayesian robust philosophy, a robust transceiver design is proposed. The design is based on convex optimization, and the involved optimization variables are optimized alternatively. The proposed transceiver optimization algorithms can be applied to the network with arbitrary hops, arbitrary antennas and arbitrary subcarriers. At the end of this paper, the performance advantages of the propose design have been assessed by the numerical results.展开更多
文摘在OFDM协作双向中继网络中,当多个用户对借助AF(amplify and forward)双向中继相互通信时,用户对之间的公平性与系统总速率不能同时兼顾.该文提出一种用户对速率成比例性公平,并与系统总速率折中的次优资源分配策略.该策略以最大化双向中继系统总速率为目标,在总功率及用户对的速率成比例约束下分两步进行.首先在每个子载波等功率假设条件下进行用户对速率成比例公平的子载波优化,使系统总速率得以提升.然后在保证公平性前提下采用一种迭代的功率分配方法将总功率分配到各个子载波,使系统总速率再次得到提升.仿真结果表明,所提出的策略在保证用户对速率成一定比例的前提下有效地提高了系统总速率.
基金The National Natural Science Foundation of China(No.61271204)the National Key Technology R&D Program during the 12th Five-Year Plan Period(No.2012BAH15B00)
文摘Unlike the existing resonance region radar systems (RRRS ) that transmit the orthogonal frequency division multiplexing (OFDM)multi-carrier waveform,the dense multi-carrier (DMC)radar waveform which has a narrower frequency interval than the traditional OFDM waveform is proposed.Therefore,in the same frequency bandwidth,the DMC waveform contains more sub-carriers and provides more frequency diversity.Additionally,to further improve detection performance,a novel optimal weight accumulation target detection (OWATD)method is proposed,where the echo electromagnetic waves at different frequencies are accumulated with the optimal weight coefficients.Then,with the signal-to-noise ratio (SNR)of echo waveform approaching infinity,the asymptotic detection performance is analyzed, and the condition that the OWATD method with the DMC outperforms the matched filter with the OFDM is presented.Simulation results show that the DMC outperforms the OFDM in the target detection performance,and the OWATD method can further improve the detection performance of the traditional methods with both the OFDM and DMC radar waveform.
基金Project supported by the National Natural Science Foundation of China (No. 60474064), and the Natural Science Foundation of Zhejiang Province (No. Y105694), China
文摘In this article, some methods are proposed for enhancing the converging velocity of the COA (chaos optimization algorithm) based on using carrier wave two times, which can greatly increase the speed and efficiency of the first carrier wave’s search for the optimal point in implementing the sophisticated searching during the second carrier wave is faster and more accurate. In addition, the concept of using the carrier wave three times is proposed and put into practice to tackle the multi-variables opti- mization problems, where the searching for the optimal point of the last several variables is frequently worse than the first several ones.
基金Supported by the National High Technology Research and Development Programme of China( No. 2007AA01Z221, No. 2009AA01Z246) , and the National Natural Science Foundation of China( No. 60672124, 60832009).
文摘We formulate the subcarrier and power allocation problem in cognitive radio networks employing orthogonal frequency division multiplexing (OFDM) as a non-linear optimization problem with the objective of maximizing sum capacity under constraints of available subcarriers, interference temperature, power budget, etc. A close-to-optimal solution with much reduced complexity is proposed to separate the problem into two steps, which also considers fairness among secondary users. A fair al- gorithm for subcarrier allocation (FA_SA) is firstly presented. Secondly, a fast iterative water-filling algorithm for power allocation (FIWFA_PA) is also proposed to maximize the sum capacity. Exten- sive simulation results show that sum capacity performance of our low-complexity solution is very close to the optimal one, while significantly improving fairness and reducing computation complexity compared with the existing solutions.
基金Supported by the National Basic Research Program of China(No.61393010101-1)the Defense-related Science & Technology Pre-Research Project of Shipbuilding Institute(No.10J3.1.6)
文摘Two utility-optimization dynamic subcarrier allocation(DSA) algorithms are designed for single carrier frequency division multiple access system(SC-FDMA).The two proposed algorithms aim to support diverse transmission capacity requirements in wireless networks,which consider both the channel state information(CSI) and the capacity requirements of each user by setting appropriate utility functions.Simulation results show that with considerable lower computational complexity,the first utility-optimization algorithm can meet the system capacity requirements of each user effectively.However,the rate-sum capacity performance is poor.Furthermore,the second proposed utility-optimization algorithm can contribute a better trade-off between system rate-sum capacity requirement and the capacity requirements of each user by introducing the signal to noise ratio(SNR) information to the utility function based on the first utility-optimization algorithm,which can improve the user requirements processing capability as well as achieve a better sum-rate capacity.
基金partly supported by the Fundamental Research Funds for the Central Universities(No.2015QNA4046)
文摘Multi-hop communications are becoming more and more important due to its flexibility and potential to improve communication coverage and quality. In this paper, we discuss the robust transceiver optimization for multi-hop amplify-and-forward multiple-input multiple-output(MIMO) orthogonal frequency division multiplexing(OFDM) systems. In general, we consider a three-dimensional robust beamforming design, i.e.,frequency, spatial and relay domains. With inevitable channel estimation errors, in our work both weighted mean square error(MSE) minimization and minimizing maximum MSE are adopted as the performance metrics to design robust transceivers. Following the Bayesian robust philosophy, a robust transceiver design is proposed. The design is based on convex optimization, and the involved optimization variables are optimized alternatively. The proposed transceiver optimization algorithms can be applied to the network with arbitrary hops, arbitrary antennas and arbitrary subcarriers. At the end of this paper, the performance advantages of the propose design have been assessed by the numerical results.