Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting ...Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.展开更多
Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative...Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.展开更多
The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO ...The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.展开更多
With the benefits of digital IC technology development, the synthetic aperture interferometric radiometer (SAIR) technique is growing fast and expanding to more and more application areas. The near field imaging detec...With the benefits of digital IC technology development, the synthetic aperture interferometric radiometer (SAIR) technique is growing fast and expanding to more and more application areas. The near field imaging detection is a potential application which has received increasing demand recently. Because the Fourier imaging theory of the traditional SAIR is based on far-field approximation, it will be invalid for near-field condition. This paper is devoted to establishing a new accurate imaging algorithm for near-field SAIR imaging. Firstly, the visibility function in near field is deduced and the relationship of which to far-field visibility function is analyzed. Then, a numerical method based on pseudo inverse and focal plane approximation is developed. The effectivity of this method is tested with imaging simulation of point source and extended source, and the superiority is also demonstrated by comparing with the existing phase-modified Fourier transform method. At last, the field experiment with one-dimensional SAIR instrument is performed to validate the practical feasibility of this method.展开更多
Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be ma...Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.展开更多
A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be c...A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.展开更多
Microwave radiometers have many applications because of their penetration ability. However, two major problems remain that obstruct the development of microwave research. One factor that limits their commercial applic...Microwave radiometers have many applications because of their penetration ability. However, two major problems remain that obstruct the development of microwave research. One factor that limits their commercial application is the relatively low resolution of microwave radiometers. The other is the non-uniform spatial resolution for each frequency of the radiometer. The resolution mismatch becomes a critical consideration when observations at two or more frequencies must be combined. In this paper, we have used the Backus-Gilbert method to solve these two problems, while AMSR-E is chosen as the research object. First, we derived the Backus-Gilbert method in detail. The simulated data were then used to decide the optimum parameters in the Backus-Gilbert method. To enhance the resolution, the Backus-Gilbert method has been applied to the AMSR-E data, which covered the Mexico Gulf and the Amazon River. After resolution was enhanced, detailed information was obtained and compared with visible high resolution data. To match the resolution, the AMSR-E data from the Oklahoma Little Washed were used to compute the Microwave Vegetation Index (MVI), which was developed by J. C. Shi. Compared to the original MVIs, the information contained in the MVIs that were processed by the Backus-Gilbert method is more reliable.展开更多
Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one inte...Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one interpolation methods for estimating daily PAR reaching the earth surface within the Poyang Lake national nature reserve, China. The daily global solar radiation records at Nanchang meteorological station and daily sunshine duration measurements at nine meteorological stations around Poyang Lake were obtained to achieve the objective. Two extrapolation methods of PARs using recorded and estimated global solar radiation at Nanchang station and three stations (Yongxiu, Xingzi and Duchang) near the nature reserve were carried out, respectively, and a spatial interpolation method combining triangulated irregular network (TIN) and inverse distance weighting (IDW) was imple- mented to estimate daily PAR. The performance evaluation of the three methods using the PARs measured at Dahuchi Conservation Station (day number of measurement = 105 days) revealed that: (1) the spatial interpolation method achieved the best PAR estima- tion (R2 - 0.89, s.c. = 0.99, F= 830.02, P 〈 0.001 ); (2) the extrapolation method from Nanchang station obtained an unbiased result (R2 = 0.88, s.c. = 0.99, F = 745.29, P 〈 0.001); however, (3) the extrapolation methods from Yongxiu, Xingzi and Duchang stations were not suitable for this specific site for their biased estimations. Considering the assumptions and principles supporting the extrapolation and interpolation methods, the authors conclude that the spatial interpolation method produces more reliable results than the extrapolation methods and holds the greatest potential in all tested methods, and more PAR measurements should be recorded to evaluate the seasonal, yearly and spatial stabilities of these models for their application to the whole nature reserve of Poyang Lake.展开更多
The Ho^(3+)/Pr^(3+) co-doped Na YF4 single crystals with various Pr^(3+) concentrations and constant Ho^(3+) molar percentage of ~1% were grown by an improved Bridgman method.Compared with the Ho^(3+) single-doped Na ...The Ho^(3+)/Pr^(3+) co-doped Na YF4 single crystals with various Pr^(3+) concentrations and constant Ho^(3+) molar percentage of ~1% were grown by an improved Bridgman method.Compared with the Ho^(3+) single-doped Na YF4 crystal,an obviously enhanced emission band at 2.85 μm is observed under 640 nm excitation.The Judd-Ofelt strength parameters(?2,?4 and ?6) are calculated,the radiative transition probabilities(A),the fluorescence branching ratios(β) and the radiative lifetime(τrad) are obtained in the meantime.The energy transfer from Pr^(3+) to Ho^(3+) and the optimum fluorescence emission of Ho^(3+) ions around 2.85 μm are investigated.Moreover,the maximum emission cross section of above samples at 2.85 μm is calculated to be 0.72×10^(-20) cm2 for the Na YF4 single crystal with Ho^(3+) molar percentage of 1% and Pr^(3+) molar percentage of 0.5% according to the measured absorption spectrum.All results suggest that the Ho^(3+)/Pr^(3+) co-doped Na YF4 single crystal may have potential applications in mid-infrared lasers.展开更多
基金Supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A505)the National Natural Science Foundation for Young Scientists of China(No.41306183)
文摘Aquarius is the second satellite mission to focus on the remote sensing of sea-surface salinity from space and it has mapped global sea-surface salinity for nearly 3 years since its launch in 2011. However,benefiting from the high atmospheric transparency and moderate sensitivity to wind speed of the L-band brightness temperature(TB),the Aquarius L-band radiometer can actually provide a new technique for the remote sensing of wind speed. In this article,the sea-surface wind speeds derived from TBs measured by Aquarius' L-band radiometer are presented,the algorithm for which is developed and validated using multisource wind speed data,including Wind Sat microwave radiometer and National Data Buoy Center buoy data,and the Hurricane Research Division of the Atlantic Oceanographic and Meteorological Laboratory wind field product. The error analysis indicates that the performance of retrieval algorithm is good. The RMSE of the Aquarius wind-speed algorithm is about 1 and 1.5 m/s for global oceans and areas of tropical hurricanes,respectively. Consequently,the applicability of using the Aquarius L-band radiometer as a near all-weather wind-speed measuring method is verified.
基金funded by the National Natural Science Foundation of China (Grant No.41275047)the National Basic Research Program of China (Grant No.2013CB955801)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA05100300)
文摘Stratospheric aerosol extinction profiles are retrieved from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography(SCIAMACHY) limb scatter measurements.In the process of retrieval,the SCIATRAN radiative transfer model is used to simulate the limb scattering radiation received by the SCIAMACHY instrument,and an optimal estimation algorithm is used to calculate the aerosol extinction profiles.Sensitivity analyses are performed to investigate the impact of the surface albedo on the accuracy of the retrieved aerosol extinction profiles in the northern midlatitudes.It is found that the errors resulting from the bias of the assumed surface albedo in the retrieval are generally below 6%.The retrieved SCIAMACHY aerosol extinction profiles are compared with corresponding Stratospheric Aerosol and Gas Experiment(SAGE) II measurements,and the results indicate that for the zonal mean profiles,the SCIAMACHY retrievals show good agreement with SAGE II measurements,with the absolute differences being less than 2.3×10-5 km-1 from 14–25 km,and less than 5.9×10-6 km-1 from 25–35 km;and the relative differences being within 20% over the latitude range of 14–35 km.
基金funded by the National Natural Science Foundation of China (41175069)the National Basic Research Program of China (973 program, 2010CB950400)
文摘The quasi-biweekly oscillation (QBWO) is a major intraseasonal variability (ISV) in the tropics. Based on bandpass-filtered outgoing longwave radiation (OLR) and wind field data, the predictability limits of the QBWO in boreal summer and boreal winter are investigated using the nonlinear local Lyapunov exponent (NLLE) approach The analysis shows that the evolution of the mean error growth of the QBWO in boreal summer and the evolution of the mean error growth in boreal winter are comparable Both curves exhibit rapid growth in the initial stage followed by a slowly fluctuating, ascending trend before saturation is reached. As a result, the potential predictability limits for the boreal summer QBWO are very close to those for the boreal winter QBWO, with a lead time of approximately three weeks. Given the current limitations in the simulation and prediction of ISV, including the QBWO, the results of this study provide a useful reference for assessing the predictability of the QBWO using model simulations.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40671121, 40701100, 40801136)
文摘With the benefits of digital IC technology development, the synthetic aperture interferometric radiometer (SAIR) technique is growing fast and expanding to more and more application areas. The near field imaging detection is a potential application which has received increasing demand recently. Because the Fourier imaging theory of the traditional SAIR is based on far-field approximation, it will be invalid for near-field condition. This paper is devoted to establishing a new accurate imaging algorithm for near-field SAIR imaging. Firstly, the visibility function in near field is deduced and the relationship of which to far-field visibility function is analyzed. Then, a numerical method based on pseudo inverse and focal plane approximation is developed. The effectivity of this method is tested with imaging simulation of point source and extended source, and the superiority is also demonstrated by comparing with the existing phase-modified Fourier transform method. At last, the field experiment with one-dimensional SAIR instrument is performed to validate the practical feasibility of this method.
基金supported by the National Basic Research Program of China(Grant Nos. 2012CB921504, 2011CB707902)the National Natural Science Foundation of China(Grant No. 11274166)+3 种基金Fundamental Research Funds for the Central Universities(Grant Nos. 1113020403,1101020402)the State Key Laboratory of Acoustics, Chinese Academy of Sciences(Grant No. SKLA201207)the priority academic program development of Jiangsu Higher Education Institutions and SRF for ROCS, SEMproject of Interdisciplinary Center of Nanjing University
文摘Acoustical tweezer is a primary application of the radiation force of a sound field. When an ultrasound focused beam passes through a micro-particle, like a cell or living biological specimens, the particle will be manipulated accurately without physical contact and invasion, due to the three-dimensional acoustical trapping force. Based on the Ray acoustics approach in the Mie regime, this work discusses the effects on the particle caused by Gaussian focused ultrasound, studies the acoustical trapping force of spherical Mie particles by ultrasound in any position, and analyzes the numerical calculation on the two-dimensional acoustical radiation force. This article also analyzes the conditions for the acoustical trapping phenomenon, and discusses the impact of the initial position and size of the particle on the magnitude of the acoustical radiation force. Furthermore, this paper considers the ultrasonic attenuation in a particle in the case of two-dimension, studies the attenuation's effects on the acoustical trapping force, and amends the calculation to the ordinary case with attenuation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41505024 & 41127901)
文摘A high-resolution dual-band terahertz(THz) radiometer was designed to measure vertical distributions of chemical elements in the middle atmosphere of the Tibetan Plateau. A forward simulation, which always should be conducted firstly for the development of a matching retrieval algorithm, has not been done before. We use two radiative transfer models, ARTS and AM, to simulate the water vapor, ozone and carbon monoxide spectra on the plateau based on the spectral design of the THz radiometer. The emission line characteristics of the three gases in this spectral band are identified. Reasons for the differences in the spectral simulations between the two models are analyzed for individual gases. The impact of several different spectral parameter settings on the simulations are evaluated through a series of sensitivity experiments. This study suggests that the ARTS is more suitable for the development of the THz radiometer retrieval algorithm. An optimal parameter setting of the ARTS for the three elements are given.
基金supported by Chinese Special Funds for National Basic Research Project of China (Grant No. 2007CB714403)National High Technology Research and Development Program of China (Grant Nos. 2007AA12Z135, 2008AA12Z110)Chinese Academy of Sciences (Grant No. KZCX2-YW-Q10-2)
文摘Microwave radiometers have many applications because of their penetration ability. However, two major problems remain that obstruct the development of microwave research. One factor that limits their commercial application is the relatively low resolution of microwave radiometers. The other is the non-uniform spatial resolution for each frequency of the radiometer. The resolution mismatch becomes a critical consideration when observations at two or more frequencies must be combined. In this paper, we have used the Backus-Gilbert method to solve these two problems, while AMSR-E is chosen as the research object. First, we derived the Backus-Gilbert method in detail. The simulated data were then used to decide the optimum parameters in the Backus-Gilbert method. To enhance the resolution, the Backus-Gilbert method has been applied to the AMSR-E data, which covered the Mexico Gulf and the Amazon River. After resolution was enhanced, detailed information was obtained and compared with visible high resolution data. To match the resolution, the AMSR-E data from the Oklahoma Little Washed were used to compute the Microwave Vegetation Index (MVI), which was developed by J. C. Shi. Compared to the original MVIs, the information contained in the MVIs that were processed by the Backus-Gilbert method is more reliable.
基金Supported by the National Natural Science Foundation of China (No. 40971191)the Scientific Research Starting Foundation of Ministry of Education of China for Returned Overseas Chinese Scholars+1 种基金the Special Foundation of Ministry of Finance of China for Nonprofit Research of Forestry Industry (No.200904001)the International Institute for Geo-information Science and Earth Observation (ITC),the Netherlands
文摘Measurements of photosynthetically active radiation (PAR), which are indispensable for simulating plant growth and productivity, are generally very scarce. This study aimed to compare two extrapolation and one interpolation methods for estimating daily PAR reaching the earth surface within the Poyang Lake national nature reserve, China. The daily global solar radiation records at Nanchang meteorological station and daily sunshine duration measurements at nine meteorological stations around Poyang Lake were obtained to achieve the objective. Two extrapolation methods of PARs using recorded and estimated global solar radiation at Nanchang station and three stations (Yongxiu, Xingzi and Duchang) near the nature reserve were carried out, respectively, and a spatial interpolation method combining triangulated irregular network (TIN) and inverse distance weighting (IDW) was imple- mented to estimate daily PAR. The performance evaluation of the three methods using the PARs measured at Dahuchi Conservation Station (day number of measurement = 105 days) revealed that: (1) the spatial interpolation method achieved the best PAR estima- tion (R2 - 0.89, s.c. = 0.99, F= 830.02, P 〈 0.001 ); (2) the extrapolation method from Nanchang station obtained an unbiased result (R2 = 0.88, s.c. = 0.99, F = 745.29, P 〈 0.001); however, (3) the extrapolation methods from Yongxiu, Xingzi and Duchang stations were not suitable for this specific site for their biased estimations. Considering the assumptions and principles supporting the extrapolation and interpolation methods, the authors conclude that the spatial interpolation method produces more reliable results than the extrapolation methods and holds the greatest potential in all tested methods, and more PAR measurements should be recorded to evaluate the seasonal, yearly and spatial stabilities of these models for their application to the whole nature reserve of Poyang Lake.
基金supported by the National Natural Science Foundation of China(No.51272109)the Natural Science Foundation of Ningbo City(No.201401A6105016)the K.C.Wong Magna Fund in Ningbo University
文摘The Ho^(3+)/Pr^(3+) co-doped Na YF4 single crystals with various Pr^(3+) concentrations and constant Ho^(3+) molar percentage of ~1% were grown by an improved Bridgman method.Compared with the Ho^(3+) single-doped Na YF4 crystal,an obviously enhanced emission band at 2.85 μm is observed under 640 nm excitation.The Judd-Ofelt strength parameters(?2,?4 and ?6) are calculated,the radiative transition probabilities(A),the fluorescence branching ratios(β) and the radiative lifetime(τrad) are obtained in the meantime.The energy transfer from Pr^(3+) to Ho^(3+) and the optimum fluorescence emission of Ho^(3+) ions around 2.85 μm are investigated.Moreover,the maximum emission cross section of above samples at 2.85 μm is calculated to be 0.72×10^(-20) cm2 for the Na YF4 single crystal with Ho^(3+) molar percentage of 1% and Pr^(3+) molar percentage of 0.5% according to the measured absorption spectrum.All results suggest that the Ho^(3+)/Pr^(3+) co-doped Na YF4 single crystal may have potential applications in mid-infrared lasers.