期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
不超过7阶的3-关系图的刻画
1
作者 黄茹雅 龙旸靖 詹鹏锦 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期159-164,共6页
给定一个图G,如果存在一个边标号树T,使得树T的叶子集等于图G的顶点集,并且树T任何叶子x到叶子y的唯一路径上的边标号之和为3当且仅当xy为图G的边,那么称图G是一个3-关系图.该文讨论了什么样的图是3-关系图,证明了图G是3-关系图的必要... 给定一个图G,如果存在一个边标号树T,使得树T的叶子集等于图G的顶点集,并且树T任何叶子x到叶子y的唯一路径上的边标号之和为3当且仅当xy为图G的边,那么称图G是一个3-关系图.该文讨论了什么样的图是3-关系图,证明了图G是3-关系图的必要条件为图G是二部图,即只要图G包含奇圈,则图G不是3-关系图.更进一步,完全刻画了圈为3-关系图的充要条件,即一个圈是3-关系图当且仅当圈为偶圈,并且给出了偶圈相对应的边标号树.最后讨论了比较小的图为3-关系图的条件,即证明了阶至多为7的图是3-关系图的充分必要条件为图G是二部图. 展开更多
关键词 3-关系图 边标号树 二部图
下载PDF
L(s,t) edge spans of trees and product of two paths 被引量:1
2
作者 牛庆杰 林文松 宋增民 《Journal of Southeast University(English Edition)》 EI CAS 2007年第4期639-642,共4页
L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assig... L( s, t)-labeling is a variation of graph coloring which is motivated by a special kind of the channel assignment problem. Let s and t be any two nonnegative integers. An L (s, t)-labeling of a graph G is an assignment of integers to the vertices of G such that adjacent vertices receive integers which differ by at least s, and vertices that are at distance of two receive integers which differ by at least t. Given an L(s, t) -labeling f of a graph G, the L(s, t) edge span of f, βst ( G, f) = max { |f(u) -f(v)|: ( u, v) ∈ E(G) } is defined. The L( s, t) edge span of G, βst(G), is minβst(G,f), where the minimum runs over all L(s, t)-labelings f of G. Let T be any tree with a maximum degree of △≥2. It is proved that if 2s≥t≥0, then βst(T) =( [△/2 ] - 1)t +s; if 0≤2s 〈 t and △ is even, then βst(T) = [ (△ - 1) t/2 ] ; and if 0 ≤2s 〈 t and △ is odd, then βst(T) = (△ - 1) t/2 + s. Thus, the L(s, t) edge spans of the Cartesian product of two paths and of the square lattice are completely determined. 展开更多
关键词 L(s t) -labeling L(s t) edge span TREE Cartesian product square lattice
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部