Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane...Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.展开更多
Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been fi...Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.展开更多
In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compress...In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.展开更多
Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible tur...Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.展开更多
We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invarian...We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.展开更多
The influence of drag-reducing superhydrophobic(SHPo)surface on turbulent boundary layer(TBL)is investigated.A large area of the SHPo surface(about 10δ99 in the streamwise and 5δ99 in the spanwise)is fabricated to f...The influence of drag-reducing superhydrophobic(SHPo)surface on turbulent boundary layer(TBL)is investigated.A large area of the SHPo surface(about 10δ99 in the streamwise and 5δ99 in the spanwise)is fabricated to fully evolve the coherent structures in the TBL.A comparative experiment is carried out by time-resolved particle image velocimetry on a smooth surface and the SHPo surface at Re_(τ)=528.Velocity profiles with high spatial resolution are obtained by the single-pixel resolution ensemble correlation method.The reduction of the streamwise velocity gradient is observed in the near-wall region of y<0.05δ99 on the SHPo surface.By comparing the turbulence statistics,it is discovered that the Reynolds shear stress is reduced by 15.7%,and the turbulent kinetic energy is reduced by 12.3%on the SHPo surface.The coherent structures are investigated by the snapshot proper orthogonal decomposition(POD)and conditional average method.The intensity of Q_(2)/Q_(4)events on the SHPo surface has declined by 16.1%and 12.7%,respectively.The number of clockwise spanwise vortices is substantially reduced by 47%.Through spatial two-point correlation analysis,the streamwise and wall-normal direction scales of the coherent structures on the SHPo surface are suppressed.展开更多
文摘Turbulent kinetic energy budgets are presented for a highly curved flow generated by the collision of plane wall turbulent jet with a low-velocity boundary layer. The different terms are obtained in the vertical plane of symmetry by quadratic interpolation of the LDV (Laser Doppler Velocimetry) measurements, for a wall jet-to-boundary layer velocity ratio of 2. The results, which have relevance to flows encountered in powered-lift aircraft operating in ground effect, quantify the structure of the complex ground vortex flow. The analysis of turbulent energy equation terms using the measured data revealed that production by normal and shear stresses are both very important to the turbulent structure of the impact zone of the ground vortex. This is an indication that the modeling of turbulence of a ground vortex requires a good representation of the production by normal stresses which is most important in the collision zone.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10832001 and 10872145)Opening Subject of State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences
文摘Time sequence signals of streamwise and normal velocity components,as well as velocity strain rate,at different vertical locations in the turbulent boundary layer over a smooth flat plate in a wind tunnel have been finely examined by the use of double-sensor hot-wire anemometry.The local module maximum for wavelet coefficient of longitudinal velocity component,as a detecting index,is employed to educe the ejection and sweep process of the coherent structure burst in the turbulent boundary layer from the random fluctuating background.The coherent waveforms of Reynolds stress residual contribution term for random fluctuations to coherent structure,as well as the velocity strain rate of coherent structure,are extracted by the conditional phase average technique.Based on the theoretical analysis of eddy viscosity coefficient in complex eddy viscosity model for coherent structure,the macro-relaxation effect between Reynolds stress residual contribution term of random fluctuations to coherent structure and the velocity strain rate of coherent structure is studied and the variations of the phase difference between them across the turbulent boundary layer are investigated experimentally.The rationality of complex eddy viscosity model for coherent structure is confirmed through the investigation.
基金supported by the National Natural Science Foundation of China(Grant No.11202014)
文摘In order to develop a wall function boundary condition for high-speed flows so as to reduce the grid-dependence of the simula- tion for the skin friction and heat flux, a research was performed to improve the compressible wall function boundary condition proposed by Nichols. Values of parameters in the velocity law-of-the-wall were revised according to numerical experiments and the expression of temperature law-of-the-wall was modified based on theoretical analysis and numerical simulation. Be- sides, the formula of the heat conduction term in near-wall region was derived so that the coupling between the wall function boundary condition and CFD code was realized more accurately. Whereafter, the application study of the modified wall func- tion was carried out. The numerical case of supersonic turbulent boundary layer on a flat plate illustrated that the modified wall function produces reasonable results of skin friction and heat flux, and profiles of velocity, temperature and turbulent eddy viscosity for coarse grids with the initial wall spacing of y+〈400, and that the modifications to the original wall function can obviously improve the simulation precision. As for the application of separation flows, it was found from the numerical cases of supersonic cavity flow and hypersonic axisymmetric compression comer that the compressible velocity law-of-the-wall originally established based on the fully-developed attached turbulent boundary layer approximately holds in the near-wall re- gion inside the separation flows, which ensures that reliable skin friction and heat flux can be given by the wall function inside the separation flows, while for the region near separation and reattachment points, the wall function gives results with a rela- tively large error, because the velocity law-of-the-wall used in the wall function takes on obvious deviation from the real ve- locity profiles near the separation and reattachment points.
基金supported by the National Natural Science Foundation of China (Grant No. 11102079)the Aeronautical Science Foundation of China (Grant No. 20111456005)
文摘Adding a new equation to the two-equation K-turbulence model framework,this paper proposed a three-equation turbulence model to determine the density variance for high-speed aero-optics and high-speed compressible turbulent flows.Simulations were performed with the new model for supersonic and hypersonic flat-plate turbulent boundary layer and hypersonic ramp flows.The results showed that the prediction with the present model agrees well with the experimental data and is significantly better than the Lutz's model in predicting the density variance for the flat-plate flows.Furthermore,the present model can produce more accurate skin pressure and skin heat flux distributions than the original K-model in simulating hypersonic compression ramp flows with separation and reattachment and shock/boundary layer interactions.Without introducing a variety of ad hoc wall damping and wall-reflection terms,the proposed three-equation turbulence model is applicable to highspeed aero-optics and turbulent flows of real vehicles of complex configuration.
基金supported by the National Natural Science Foundation of China (Grant Nos. 90716008 and 10921202)the National Basic Research Program of China (Grant No. 2009CB724100)
文摘We derive exact near-wall and centerline constraints and apply them to improve a recently proposed LPR model for finite Reynolds number(Re) turbulent channel flows.The analysis defines two constants which are invariant with Re and suggests two more layers for incorporating boundary effects in the prediction of the mean velocity profile in the turbulent channel.These results provide corrections for the LPR mixing length model and incorrect predictions near the wall and the centerline.Moreover,we show that the analysis,together with a set of well-defined sensitive indicators,is useful for assessment of numerical simulation data.
基金the National Natural Science Foundation of China(Grant Nos.11732010,11972251,11872272,11902218,and 12172242)the Ministry of Industry and Information Technology(Grant No.[2019]360).
文摘The influence of drag-reducing superhydrophobic(SHPo)surface on turbulent boundary layer(TBL)is investigated.A large area of the SHPo surface(about 10δ99 in the streamwise and 5δ99 in the spanwise)is fabricated to fully evolve the coherent structures in the TBL.A comparative experiment is carried out by time-resolved particle image velocimetry on a smooth surface and the SHPo surface at Re_(τ)=528.Velocity profiles with high spatial resolution are obtained by the single-pixel resolution ensemble correlation method.The reduction of the streamwise velocity gradient is observed in the near-wall region of y<0.05δ99 on the SHPo surface.By comparing the turbulence statistics,it is discovered that the Reynolds shear stress is reduced by 15.7%,and the turbulent kinetic energy is reduced by 12.3%on the SHPo surface.The coherent structures are investigated by the snapshot proper orthogonal decomposition(POD)and conditional average method.The intensity of Q_(2)/Q_(4)events on the SHPo surface has declined by 16.1%and 12.7%,respectively.The number of clockwise spanwise vortices is substantially reduced by 47%.Through spatial two-point correlation analysis,the streamwise and wall-normal direction scales of the coherent structures on the SHPo surface are suppressed.