In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different sc...In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of "pass by the main track, start and stop by the siding track". The other is the scheme of "two tracks play the same role". We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model.展开更多
Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were s...Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were selected: A: vent closed and fan shut, B: vent closed and fan started, C: vent opened and fan shut, D: vent opened and fan started. In vent closed modes, CO2 levels reached several thousands of ppm in few minutes at any speeds. For mode C, CO2 levels exceeded the guideline at low speeds 50 km/h, while it reduced below one at higher speeds 80 km/h. Fan has no significant impact on ventilation during vent closed. The ventilation efficiency in each mode increased with the speed raising. To determine the ventilation rate of running vehicle, the experiment was implemented by using CO2 emitted from driver and passengers as tracer gas. Ventilation rate for the different modes and speeds were calculated.展开更多
With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In ...With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.展开更多
The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within...The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.展开更多
基金supported by National Natural Science Foundation of China under Grant Nos. 60634010 and 60776829Key Technology Research of Train Control System,and Urban Rail Transit Automation and Control Beijing Municipal Government Key Laboratory
文摘In this paper, we propose a new cellular automata model to simulate the railway traffic at station. Based on NaSch model, the proposed station model is composed of the main track and the siding track. Two different schemes for trains passing through station are considered. One is the scheme of "pass by the main track, start and stop by the siding track". The other is the scheme of "two tracks play the same role". We simulate the train movement using the proposed model and analyze the traffic flow at station. The simulation results demonstrate that the proposed cellular automata model can be successfully used for the simulations of railway traffic. Some characteristic behaviors of railway traffic flow can be reproduced. Moreover, the simulation values of the minimum headway are close to the theoretical values. This result demonstrates the dependability and availability of the proposed model.
文摘Factors contributing to ventilation quantity of the vehicle are ventilation modes, cabin characteristics and vehicle speeds. CO2 levels were investigated under different speeds and ventilation modes. Four modes were selected: A: vent closed and fan shut, B: vent closed and fan started, C: vent opened and fan shut, D: vent opened and fan started. In vent closed modes, CO2 levels reached several thousands of ppm in few minutes at any speeds. For mode C, CO2 levels exceeded the guideline at low speeds 50 km/h, while it reduced below one at higher speeds 80 km/h. Fan has no significant impact on ventilation during vent closed. The ventilation efficiency in each mode increased with the speed raising. To determine the ventilation rate of running vehicle, the experiment was implemented by using CO2 emitted from driver and passengers as tracer gas. Ventilation rate for the different modes and speeds were calculated.
基金the support from NSFC under Grant 61222105the 863 Plan of China under Grant 2014AA01A706+3 种基金the project of State Key Lab under Grant RCS2012ZT013the Key Project of Chinese Ministry of Education under Grant 313006the Key Project for Railway Ministry of China under Grant 2012X008-Athe project of State Key Lab under Grant No. RCS2011ZZ002
文摘With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.
文摘The performance of a BTES (borehole thermal energy storage) system is primarily governed by ground heat flux, soil thermal properties and groundwater conditions. However, the design of the heat exchanger used within the BTES system can also make a significant difference in the efficiency of the system. A thermal response test was carded out for a Kelix GHE (ground heat exchanger) system, the latest innovation in geothermal ground loop construction, on an Ecofarm in the town of Caledon East, Ontario, Canada. In addition, a verifying test was performed for a CEES (conventional earth energy system) located 6 m away from the Kelix GHE. The boreholes for these two different heat exchanger designs were drilled with the same diameter, to the same depth and were located in the same/identical geo-hydrological conditions. The response test provided the effective average of undisturbed ground temperature, geothermal properties including thermal conductivity, heat capacity and thermal resistance between the fluid and the borehole wall. The mathematical analysis method used for the response test is presented here. Results of the response test were verified, analyzed and are further discussed.