Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis....Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis. Under ultra-high vacuum (UHV) conditions, the problem of nickel carbonyl impurity almost does not exist in the case that a high purity of CO is used directly. While in the near ambient pressure (NAP) range, nickel carbonyl is easily found on the surface by passing through the Ni containing tubes. Here, the NAP techniques such as NAP-X-ray photoelectron spectroscopy and NAP-scanning tunneling microscopy are used to study the adsorption of nickel carbonyl contaminated CO gas on Cu(111) surface in UHV and NAP conditions. By controlling the pressure of contaminated CO, the Ni-Cu bimetallic catalyst can form on Cu(111) surface. Furthermore, we investigate the process of CO adsorption and dissociation on the formed Ni-Cu bi-metal surface, and several high-pressure phases of CO structures are reported. This work contributes to understanding the interaction of nickel carbonyl with Cu(111) at room temperature, and reminds the consideration of CO molecules contaminated by nickel carbonyl especially in the NAP range study.展开更多
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.
基金supported by the National Natural Science Foundation of China(No.91845109)Key Laboratory of Surface Physics and Chemistry Discipline Development Fund(XKFZ201711)
文摘Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis. Under ultra-high vacuum (UHV) conditions, the problem of nickel carbonyl impurity almost does not exist in the case that a high purity of CO is used directly. While in the near ambient pressure (NAP) range, nickel carbonyl is easily found on the surface by passing through the Ni containing tubes. Here, the NAP techniques such as NAP-X-ray photoelectron spectroscopy and NAP-scanning tunneling microscopy are used to study the adsorption of nickel carbonyl contaminated CO gas on Cu(111) surface in UHV and NAP conditions. By controlling the pressure of contaminated CO, the Ni-Cu bimetallic catalyst can form on Cu(111) surface. Furthermore, we investigate the process of CO adsorption and dissociation on the formed Ni-Cu bi-metal surface, and several high-pressure phases of CO structures are reported. This work contributes to understanding the interaction of nickel carbonyl with Cu(111) at room temperature, and reminds the consideration of CO molecules contaminated by nickel carbonyl especially in the NAP range study.