In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character...In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.展开更多
A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results ...A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.展开更多
Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some proble...Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.展开更多
Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by ...Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.展开更多
In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and h...In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.展开更多
Some sociologists of the 20th century--Popper, Nisbet, Tilly, Wallerstein--doubted the applicability of the concept "evolution" to the process of social changes. It was stated that processes happening in a society c...Some sociologists of the 20th century--Popper, Nisbet, Tilly, Wallerstein--doubted the applicability of the concept "evolution" to the process of social changes. It was stated that processes happening in a society cannot be described using the approach of strict causality. However, dignifying life of the mankind is doubtful without elaborated scheme of social evolution and universal guiding line for the control over the further aociety evolution. General logica of social evolution can be traced by the change of human position in a society. Describing this change with the help of the activity-value approach one can construct ideal types of such evolutionary stages as wilderness, barbarism, civilization. The study of features and properties of ideal types of social evolution stages shows the regularity of two natural civilizations appearance: home-service civilization and market one. Countries of home-service civilization are ancient Egypt, China, and Russia (since Moscow Kingdom arose). Athens, Novgorod Republic and Western countries are examples of the market civilization. The study of the market civilization properties shows that its long existence is doubtful. Authors propose an ideal type of spirit-game civilization as a long-term guiding line for the controlled social evolution. Control over evolution could save mankind and solve their main problems.展开更多
Avian brood parasitism is a model system for studies of coevolution and ecological interactions between parasites and their hosts. However, recent work may have led to misconceptions concerning the Brown-headed Cowbir...Avian brood parasitism is a model system for studies of coevolution and ecological interactions between parasites and their hosts. However, recent work may have led to misconceptions concerning the Brown-headed Cowbird (Molothrus ater), the most widely studied brood parasitic bird in the world, and its effects on host species. Potential misconceptions about this species that could affect management issues are as follows: cowbird populations are increasing; cowbirds are relatively new to North America; recently exposed hosts are defenseless against parasitism; cowbirds have caused widespread declines of songbirds; and cowbird control is always effective in increasing the size of endangered host populations. Potential coevolutionary misconceptions are that cowbirds are typically 'host tolerant'; cowbirds evict host nestmates; and the mafia effect is widespread. It is important to clarify these issues because such misconceptions could hinder our understanding of parasite-host interactions, and thus obscure the direction of basic research and of management efforts taken to limit cowbird impacts on endangered species. We discuss these issues and suggest future research directions to enhance our understanding of this fascinating species.展开更多
基金The National Natural Science Foundation of China(No.60972001)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXZZ_0163)the Scientific Research Foundation of Graduate School of Southeast University(No.YBPY1212)
文摘In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method.
基金Project(2011FJ3016)supported by the Research Foundation of Science & Technology Office of Hunan Province,China
文摘A novel and simple technique to control the search direction of the differential mutation was proposed.In order to verify the performance of this method,ten widely used benchmark functions were chosen and the results were compared with the original differential evolution(DE)algorithm.Experimental results indicate that the search direction controlled DE algorithm obtains better results than the original DE algorithm in term of the solution quality and convergence rate.
基金National Natural Science Foundation of China(No.51675399)。
文摘Injection molding machine,hydraulic elevator,speed actuators belong to variable speed pump control cylinder system.Because variable speed pump control cylinder system is a nonlinear hydraulic system,it has some problems such as response lag and poor steady-state accuracy.To solve these problems,for the hydraulic cylinder of injection molding machine driven by the servo motor,a fractional order proportion-integration-diferentiation(FOPID)control strategy is proposed to realize the speed tracking control.Combined with the adaptive differential evolution algorithm,FOPID control strategy is used to determine the parameters of controller on line based on the test on the servo-motor-driven gear-pump-controlled hydraulic cylinder injection molding machine.Then the slef-adaptive differential evolution fractional order PID controller(SADE-FOPID)model of variable speed pump-controlled hydraulic cylinder is established in the test system with simulated loading.The simulation results show that compared with the classical PID control,the FOPID has better steady-state accuracy and fast response when the control parameters are optimized by the adaptive differential evolution algorithm.Experimental results show that SADE-FOPID control strategy is effective and feasible,and has good anti-load disturbance performance.
文摘Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolution- ary direction dynamically during evolution. After evolution, the solutions’s precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.
文摘In this study, the developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors (FBR) using Ziegler-Natta catalyst is presented. The modified mathematical model to account for mass and heat transfer between the solid particles and the surrounding gas in the emulsion phase is developed in this work to include site activation reaction. This model developed in the present study is subsequently compared with well-known models, namely, the bubble-growth, well-mixed and the constant bubble size models for porous and non porous catalyst. The results we obtained from the model was very close to the constant bubble size model, well-mixed model and bubble growth model at the beginning of the reaction but its overall behavior changed and is closer to the well-mixed model compared with the bubble growth model and constant bubble size model after half an hour of operation. Neural-network based predictive controller are implemented to control the system and compared with the conventional PID controller, giving acceptable results.
文摘Some sociologists of the 20th century--Popper, Nisbet, Tilly, Wallerstein--doubted the applicability of the concept "evolution" to the process of social changes. It was stated that processes happening in a society cannot be described using the approach of strict causality. However, dignifying life of the mankind is doubtful without elaborated scheme of social evolution and universal guiding line for the control over the further aociety evolution. General logica of social evolution can be traced by the change of human position in a society. Describing this change with the help of the activity-value approach one can construct ideal types of such evolutionary stages as wilderness, barbarism, civilization. The study of features and properties of ideal types of social evolution stages shows the regularity of two natural civilizations appearance: home-service civilization and market one. Countries of home-service civilization are ancient Egypt, China, and Russia (since Moscow Kingdom arose). Athens, Novgorod Republic and Western countries are examples of the market civilization. The study of the market civilization properties shows that its long existence is doubtful. Authors propose an ideal type of spirit-game civilization as a long-term guiding line for the controlled social evolution. Control over evolution could save mankind and solve their main problems.
文摘Avian brood parasitism is a model system for studies of coevolution and ecological interactions between parasites and their hosts. However, recent work may have led to misconceptions concerning the Brown-headed Cowbird (Molothrus ater), the most widely studied brood parasitic bird in the world, and its effects on host species. Potential misconceptions about this species that could affect management issues are as follows: cowbird populations are increasing; cowbirds are relatively new to North America; recently exposed hosts are defenseless against parasitism; cowbirds have caused widespread declines of songbirds; and cowbird control is always effective in increasing the size of endangered host populations. Potential coevolutionary misconceptions are that cowbirds are typically 'host tolerant'; cowbirds evict host nestmates; and the mafia effect is widespread. It is important to clarify these issues because such misconceptions could hinder our understanding of parasite-host interactions, and thus obscure the direction of basic research and of management efforts taken to limit cowbird impacts on endangered species. We discuss these issues and suggest future research directions to enhance our understanding of this fascinating species.