针对遥感图像场景分类任务从复杂背景下准确提取出地物信息困难和普通卷积提取特征容易产生冗余特征的问题,提出一种基于改进密集连接网络(Ghost-Densenet)的分类模型。该模型利用SoftPool对MaxPool和AveragePool进行替换,最大程度上保...针对遥感图像场景分类任务从复杂背景下准确提取出地物信息困难和普通卷积提取特征容易产生冗余特征的问题,提出一种基于改进密集连接网络(Ghost-Densenet)的分类模型。该模型利用SoftPool对MaxPool和AveragePool进行替换,最大程度上保留了遥感图像的主要特征;利用Ghost模块通过简单线性变化生成特征图的特性,有效增强模型特征提取能力的同时减少了网络瓶颈层的冗余特征和网络的参数量与计算量。实验结果表明,该模型在UC Merced_Land Use数据集上的平均准确率为92.76%,相较于Densenet121,模型大小减少26.57%,计算量降低32.99%,准确率提高1.17%。通过在Aerial Image Dataset、WHU-RS19 Date Set、RSSCN7 Date Set、SIRI-WHU Date Set四个数据集上进行实验,验证了模型的有效性和鲁棒性,对遥感图像场景分类任务具有良好的应用价值。展开更多
文摘针对遥感图像场景分类任务从复杂背景下准确提取出地物信息困难和普通卷积提取特征容易产生冗余特征的问题,提出一种基于改进密集连接网络(Ghost-Densenet)的分类模型。该模型利用SoftPool对MaxPool和AveragePool进行替换,最大程度上保留了遥感图像的主要特征;利用Ghost模块通过简单线性变化生成特征图的特性,有效增强模型特征提取能力的同时减少了网络瓶颈层的冗余特征和网络的参数量与计算量。实验结果表明,该模型在UC Merced_Land Use数据集上的平均准确率为92.76%,相较于Densenet121,模型大小减少26.57%,计算量降低32.99%,准确率提高1.17%。通过在Aerial Image Dataset、WHU-RS19 Date Set、RSSCN7 Date Set、SIRI-WHU Date Set四个数据集上进行实验,验证了模型的有效性和鲁棒性,对遥感图像场景分类任务具有良好的应用价值。