静态电压稳定域(static voltage stability region,SVSR)是监控电网电压安全运行的有效手段,其边界的求取是SVSR技术应用的关键。推导了简单系统单机单负荷模型的SVSR解析边界,在此基础上,针对复杂系统静态电压稳定域边界(static voltag...静态电压稳定域(static voltage stability region,SVSR)是监控电网电压安全运行的有效手段,其边界的求取是SVSR技术应用的关键。推导了简单系统单机单负荷模型的SVSR解析边界,在此基础上,针对复杂系统静态电压稳定域边界(static voltage stability region boundary,SVSRB)构建问题,提出了计及拓扑相关性的稳定域边界模型,并通过预估-校正方法完成了该模型在连续参数变化下的追踪求解。该方法能够以任一边界点为初值,快速迁移至整个稳定边界,实现了边界求取的"以点带面"。最后通过仿真算例验证了所提方法的准确性和时效性,具有一定的工程价值。展开更多
Suppose X = (Xr, Fr, t ∈ R+) be an optional reward process with ( Fr) satisfying usual conditions. In this paper, we correct the proof of existence about Snell envelope in [4] and the proof of an important lemma (Lem...Suppose X = (Xr, Fr, t ∈ R+) be an optional reward process with ( Fr) satisfying usual conditions. In this paper, we correct the proof of existence about Snell envelope in [4] and the proof of an important lemma (Lemma 4. 6) in [5], and give a proof of existence about Snell envelope under certain conditions, i. e. EZx- 【 ∞ and Z is upper-semi-continuous on the right (USCR) or there is a stopping rule (SR)τ ≤σ such that EZx-∞ for any stopping rule σ . At the same time, we prove a four-repeated limit theorem when Z is continuous on the right. The character and the uniqueness of the optimal stopping time (OST) or optimal stopping rule (OSR) are discussed.展开更多
文摘静态电压稳定域(static voltage stability region,SVSR)是监控电网电压安全运行的有效手段,其边界的求取是SVSR技术应用的关键。推导了简单系统单机单负荷模型的SVSR解析边界,在此基础上,针对复杂系统静态电压稳定域边界(static voltage stability region boundary,SVSRB)构建问题,提出了计及拓扑相关性的稳定域边界模型,并通过预估-校正方法完成了该模型在连续参数变化下的追踪求解。该方法能够以任一边界点为初值,快速迁移至整个稳定边界,实现了边界求取的"以点带面"。最后通过仿真算例验证了所提方法的准确性和时效性,具有一定的工程价值。
基金This paper is supported by pre-research fund of the University
文摘Suppose X = (Xr, Fr, t ∈ R+) be an optional reward process with ( Fr) satisfying usual conditions. In this paper, we correct the proof of existence about Snell envelope in [4] and the proof of an important lemma (Lemma 4. 6) in [5], and give a proof of existence about Snell envelope under certain conditions, i. e. EZx- 【 ∞ and Z is upper-semi-continuous on the right (USCR) or there is a stopping rule (SR)τ ≤σ such that EZx-∞ for any stopping rule σ . At the same time, we prove a four-repeated limit theorem when Z is continuous on the right. The character and the uniqueness of the optimal stopping time (OST) or optimal stopping rule (OSR) are discussed.