Based on the revised geometric measure of entanglement (RGME) proposed by us [J. Phys. A: Math. Theor. 40 (2007) 3507], we obtain the RGME of multipartite state including three-qubit GHZ state, W state, and the g...Based on the revised geometric measure of entanglement (RGME) proposed by us [J. Phys. A: Math. Theor. 40 (2007) 3507], we obtain the RGME of multipartite state including three-qubit GHZ state, W state, and the generalized Smolin state (GSS) in the presence of noise and the two-mode squeezed thermal state. Moreover, we compare their RGME with geometric measure of entanglement (GME) and relative entropy of entanglement (RE). The results indicate RGME is an appropriate measure of entanglement. Finally, we define the Gaussian GME which is an entangled monotone.展开更多
In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and...In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.展开更多
The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripart...The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripartite entanglement for states of close to GHZ state from the multi-mode coherent field. Moreover, the ability of the qubits gain the tripartite entanglement for states close to W state and bipartite entanglement from the continuous variable system is depended on the phase of multi-mode coherent field.展开更多
We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbase...We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbased on the braiding operators.展开更多
The purpose of this study is to contribute methodologically, through a systematic study of the application of different optimization techniques to design integrated distillation columns in binary, for it established o...The purpose of this study is to contribute methodologically, through a systematic study of the application of different optimization techniques to design integrated distillation columns in binary, for it established one optimization technique, deterministic, was optimized distillation column at steady state. For this part was used tabu search to solve the type binary problem. For each choice of the search whole continuous variables were optimized with the deterministic method for process design perturbation is applied to the molar fraction of the feed. It develops and implements the mathematical algorithm solving the problem, then validation of the methodology proposed dynamic simulation of the system is compared with and without control, with both traditional and integrated approaches.展开更多
It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlatio...It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlations (that include entanglement as a special kind of correlations) are ubiquitous for such systems. For a quantum state, if there are not non-classical correlations (quantum discord is zero) for one, there are in general non-classical correlations (quantum discord is non-zero) for another set of the composite system's degrees of freedom. The physical relevance of this "quantum correlations relativity" is emphasized also in the more general context.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 60573008
文摘Based on the revised geometric measure of entanglement (RGME) proposed by us [J. Phys. A: Math. Theor. 40 (2007) 3507], we obtain the RGME of multipartite state including three-qubit GHZ state, W state, and the generalized Smolin state (GSS) in the presence of noise and the two-mode squeezed thermal state. Moreover, we compare their RGME with geometric measure of entanglement (GME) and relative entropy of entanglement (RE). The results indicate RGME is an appropriate measure of entanglement. Finally, we define the Gaussian GME which is an entangled monotone.
基金Supported by the National Fundamental Research Program under Grant No.2007CB925204the National Natural Science Foundation of China under Grant Nos.10775048 and 10325523the Education Committee of Hunan Province under Grant No.08W012
文摘In this paper, we propose a scheme to realize quantum information transfer from a double quantum dot (DQD) system to a quantized cavity field. The DQD and the cavity field are treated as a two-state charge qubit and a continuous-variable system, respectively. It is shown that quantum information encoded in the two-state DQD system can be transferred to quantum states of the cavity field with a continuous-variable basis through appropriate projective measurements with respect to the DQD.
基金Supported by the National Natural Science Foundation of China under Grant No.10774108
文摘The multipartite entanglement transfer from continuous variable system to spin qubits is investigated. We select multi-mode coherent field as continuous variable field. It is found that the qubits can not gain tripartite entanglement for states of close to GHZ state from the multi-mode coherent field. Moreover, the ability of the qubits gain the tripartite entanglement for states close to W state and bipartite entanglement from the continuous variable system is depended on the phase of multi-mode coherent field.
基金Supported by National Research Foundation and Ministry of Education,Singapore under Research under Grant No.WBS:R-710-000-008-271the Natural Science Foundation of China under Grant No.10975075the Fundamental Research Funds for the Central Universities
文摘We study entanglement swapping in continuous variable systems by using braiding transformations.It isfound that entanglement swapping in two-mode squeezed vacuum states and squeezed coherent states can be realizedbased on the braiding operators.
文摘The purpose of this study is to contribute methodologically, through a systematic study of the application of different optimization techniques to design integrated distillation columns in binary, for it established one optimization technique, deterministic, was optimized distillation column at steady state. For this part was used tabu search to solve the type binary problem. For each choice of the search whole continuous variables were optimized with the deterministic method for process design perturbation is applied to the molar fraction of the feed. It develops and implements the mathematical algorithm solving the problem, then validation of the methodology proposed dynamic simulation of the system is compared with and without control, with both traditional and integrated approaches.
基金supported by Ministry of Science Serbia (Grant No. 171028)in partfor MD by the ICTP-SEENET-MTP grant PRJ-09 "Strings and Cosmology"in frame of the SEENET-MTP Network
文摘It is shown that a choice of degrees of freedom of a bipartite continuous variable system determines the amount of non-classical correlations (quantified by discord) in the system's state. Non-classical correlations (that include entanglement as a special kind of correlations) are ubiquitous for such systems. For a quantum state, if there are not non-classical correlations (quantum discord is zero) for one, there are in general non-classical correlations (quantum discord is non-zero) for another set of the composite system's degrees of freedom. The physical relevance of this "quantum correlations relativity" is emphasized also in the more general context.