期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于高斯密度图的自然场景中文文字检测
1
作者 王昌波 仝明磊 《电子设计工程》 2023年第18期168-173,共6页
自然场景下中文文字检测任务字符面积较小且文字背景复杂,为此,该文提出了一种基于高斯密度图作为分割区域标签的文字检测改进方法。将文本区域标注从矩形框改变为高斯分布区域标签,在特征融合部分引入了交叉通道融合注意力机制,以提高... 自然场景下中文文字检测任务字符面积较小且文字背景复杂,为此,该文提出了一种基于高斯密度图作为分割区域标签的文字检测改进方法。将文本区域标注从矩形框改变为高斯分布区域标签,在特征融合部分引入了交叉通道融合注意力机制,以提高网络的收敛性能,提出像素值一维投影法解决了文字密集区域输出的高斯密度图在不同标签区域出现重叠的问题。经过实验验证,该文方法对中文文字检测有较好的结果,证明了该方法的有效性。 展开更多
关键词 文字检测 高斯密度图标签 交叉通道融合注意力机制 一维投影
下载PDF
基于多模态融合的2D MR脑肿瘤图像分割算法研究 被引量:1
2
作者 李楠 张宏立 《光电子.激光》 CAS CSCD 北大核心 2023年第8期890-896,共7页
针对不同模态MR脑肿瘤图像呈现的肿瘤状态差异以及卷积神经网络(convolutional neural networks,CNNs)提取特征局限性的问题,提出了一种基于多模态融合的MR脑肿瘤图像分割方法。分割模型以U-net网络为原型,创新一种多模态图像融合方式... 针对不同模态MR脑肿瘤图像呈现的肿瘤状态差异以及卷积神经网络(convolutional neural networks,CNNs)提取特征局限性的问题,提出了一种基于多模态融合的MR脑肿瘤图像分割方法。分割模型以U-net网络为原型,创新一种多模态图像融合方式以加强特征提取能力,同时引入通道交叉注意力机制(channel cross transformer,CCT)代替U-net中的跳跃连接结构,进一步弥补深浅层次的特征差距与空间依赖性,有效融合多尺度特征,加强对肿瘤的分割能力。实验在BraTS数据集上进行了多目标分割结果验证,通过定量分析对比前沿网络分割结果,表明该方法确有良好的分割性能,其分割出三种肿瘤区域的Dice系数分别达到80%、74%、71%。 展开更多
关键词 脑肿瘤分割 U-net网络 多模态融合 通道交叉注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部